Что такое деформация тела

Деформация

что такое деформация тела

Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.

Деформации разделяют на обратимые (упругие) и необратимые (неупругие, пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые — остаются.

В основе упругих деформаций лежат обратимые смещения атомов тела от положения равновесия (другими словами, атомы не выходят за пределы межатомных связей); в основе необратимых — необратимые перемещения атомов на значительные расстояния от исходных положений равновесия (то есть выход за рамки межатомных связей, после снятия нагрузки переориентация в новое равновесное положение).

Пластические деформации — это необратимые деформации, вызванные изменением напряжений. Деформации ползучести — это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств — в частности, при холодном деформировании повышается прочность.

Виды деформации[ | ]

Диаграмма, показывающая зависимость между механическим напряжением (σ) и деформацией (ε) обобщённого материала. Слева — упругие деформации, справа — пластические

Наиболее простые виды деформации тела в целом:

  • растяжение-сжатие,
  • сдвиг,
  • изгиб,
  • кручение.

В большинстве практических случаев наблюдаемая деформация представляет собой совмещение нескольких одновременных простых деформаций. В конечном счёте, любую деформацию можно свести к двум наиболее простым: растяжению (или сжатию) и сдвигу.

Изучение деформации[ | ]

Деформация физического тела вполне определяется, если известен вектор перемещения каждой его точки.

Деформация твёрдых тел в связи со структурными особенностями последних изучается физикой твёрдого тела, а движения и напряжения в деформируемых твёрдых телах — теорией упругости и пластичности. У жидкостей и газов, частицы которых легкоподвижны, исследование деформации заменяется изучением мгновенного распределения скоростей.

Причины возникновения деформации твёрдых тел[ | ]

Деформация твёрдого тела может явиться следствием фазовых превращений, связанных с изменением объёма, теплового расширения, намагничивания (магнитострикция), появления электрического заряда (пьезоэлектрический эффект) или же результатом действия внешних сил.

Упругая и пластическая деформация[ | ]

Основная статья: Упругая деформация

Деформация называется упругой, если она исчезает после удаления вызвавшей её нагрузки (то есть тело возвращается к первоначальным размерам и форме), и пластической, если после снятия нагрузки деформация не исчезает (или исчезает не полностью).

Все реальные твёрдые тела при деформации в большей или меньшей мере обладают пластическими свойствами. При некоторых условиях пластическими свойствами тел можно пренебречь, как это и делается в теории упругости. Твёрдое тело с достаточной точностью можно считать упругим, то есть не обнаруживающим заметных пластических деформаций, пока нагрузка не превысит некоторого предела (предел упругости).

Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации.

При неизменной нагрузке, приложенной к телу, деформация изменяется со временем; это явление называется ползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и упругое последействие.

Одной из теорий, объясняющих механизм пластической деформации, является теория дислокаций в кристаллах.

Сплошность[ | ]

В теории упругости и пластичности тела рассматриваются как «сплошные». Сплошность (то есть способность заполнять весь объём, занимаемый материалом тела, без всяких пустот) является одним из основных свойств, приписываемых реальным телам.

Понятие сплошности относится также к элементарным объёмам, на которые можно мысленно разбить тело.

Изменение расстояния между центрами каждых двух смежных бесконечно малых объёмов у тела, не испытывающего разрывов, должно быть малым по сравнению с исходной величиной этого расстояния.

Простейшая элементарная деформация[ | ]

Простейшей элементарной деформацией (или относительной деформацией) является относительное удлинение некоторого элемента:

Источник: https://encyclopaedia.bid/%D0%B2%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F/%D0%9F%D0%BB%D0%B0%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%B4%D0%B5%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%8F

Виды деформации твердых тел

что такое деформация тела

Не вдаваясь в теоретические основы физики процессом деформации твердого тела можно назвать изменение его формы под действием внешней нагрузки. Любой твердый материал имеет кристаллическую структуру с определенным расположением атомов и частиц, в ходе приложения нагрузки происходит смещение отдельных элементов или целых слоев относительно, другими словами возникают дефекты материалов.

Деформация растяжения

Деформация растяжения — вид деформации, при которой нагрузка прикладывается продольно от тела, то есть соосно или параллельно точкам крепления тела. Проще всего растяжение рассмотреть на буксировочном тросе для автомобилей.

Трос имеет две точки крепления к буксиру и буксируемому объекту, по мере начала движения трос выпрямляется и начинает тянуть буксируемый объект.

В натянутом состоянии трос подвергается деформации растяжения, если нагрузка меньше предельных значений, которые может он выдержать, то после снятия нагрузки трос восстановит свою форму.

Схема растяжения образца

Посмотрите прибор измеряющий деформацию растяжения →

Деформация растяжения является одним из основных лабораторных исследований физических свойств материалов. В ходе приложения растягивающих напряжений определяются величины, при которых материал способен:

  1. воспринимать нагрузки с дальнейшим восстановлением первоначального состояния (упругая деформация)
  2. воспринимать нагрузки без восстановления первоначального состояния (пластическая деформация)
  3. разрушаться на пределе прочности

Данные испытания являются главными для всех тросов и веревок, которые используются для строповки, крепления грузов, альпинизма. Растяжение имеет значение также при строительстве сложных подвесных систем со свободными рабочими элементами.

Деформация сжатия

Деформация сжатия — вид деформации, аналогичный растяжению, с одним отличием в способе приложения нагрузки, ее прикладывают соосно, но по направлению к телу. Сдавливание объекта с двух сторон приводит к уменьшению его длины и одновременному упрочнению, приложение больших нагрузок образовывает в теле материала утолщения типа «бочка».

Схема сжатия образца

В качестве примера можно привести тот же прибор что и в деформации растяжения немного выше.

Деформация сжатия широко используется в металлургических процессах ковки металла, в ходе процесса металл получает повышенную прочность и заваривает дефекты структуры. Сжатие также важно при строительстве зданий, все элементы конструкции фундамента, свай и стен испытывают давящие нагрузки. Правильный расчет несущих конструкций здания позволяет сократить расход материалов без потери прочности.

Деформация сдвига

Деформация сдвига — вид деформации, при котором нагрузка прикладывается параллельно основанию тела. В ходе деформации сдвига одна плоскость тела смещается в пространстве относительно другой. На предельные нагрузки сдвига испытываются все крепежные элементы — болты, шурупы, гвозди. Простейший пример деформации сдвига – расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки – сидение.

Схема сдвига образца

Посмотрите прибор измеряющий деформацию сдвига →

Деформация изгиба

Деформация изгиба — вид деформации, при котором нарушается прямолинейность главной оси тела. Деформации изгиба испытывают все тела подвешенные на одной или нескольких опорах. Каждый материал способен воспринимать определенный уровень нагрузки, твердые тела в большинстве случаев способны выдерживать не только свой вес, но и заданную нагрузку. В зависимости от способа приложения нагрузки при изгибе различают чистый и косой изгиб.

Схема изгиба образца

Посмотрите прибор измеряющий деформацию изгиба →

Значение деформации изгиба важно для проектирования упругих тел, таких, как мост с опорами, гимнастический брус, турник, ось автомобиля и другие.

Деформация кручения

Деформация кручения – вид деформации, при котором к телу приложен крутящий момент, вызванный парой сил, действующих в перпендикулярной плоскости оси тела. На кручение работают валы машин, шнеки буровых установок и пружины.

Схема кручения образца

Посмотрите прибор измеряющий деформацию кручения →

Пластическая и упругая деформация

В процессе деформации важное значение имеет величина межатомных связей, приложение нагрузки достаточной для их разыва приводит к необратимым последствиям (необратимая или пластическая деформация). Если нагрузка не превысила допустимых значений, то тело может вернуться в исходное состояние (упругая деформация).

Простейший пример поведения предметов, подверженных пластической и упругой деформацией, можно проследить на падении с высоты резинового мяча и куска пластилина. Резиновый мяч обладает упругостью, поэтому при падении он сожмется, а после превращения энергии движения в тепловую и потенциальную, снова примет первоначальную форму.

Пластилин обладает большой пластичностью, поэтому при ударе о поверхность оно необратимо утратит свою первоначальную форму.

За счет наличия деформационных способностей все известные материалы обладают набором полезных свойств – пластичностью, хрупкостью, упругостью, прочностью и другими. Исследование этих свойств достаточно важная задача, позволяющая выбрать или изготовить необходимый материал. Кроме того, само по себе наличие деформации и его детектирование часто бывает необходимо для задач приборостроения, для этого применяются специальные датчики называемые экстензометрами или по другому тензометрами.

Если вам понравилась статья нажмите на одну из кнопок ниже

Источник: http://www.DeviceSearch.ru.com/article/3649

Пластическая деформация материалов

что такое деформация тела

Пластическая деформация – эффективный инструмент формирования структуры различных материалов. На ее особенностях основаны технологии обработки давлением, придание материалам особых свойств, создание наноматериалов.

Понятие деформации

Под термином «деформация» понимаются любые изменения структуры, формы, размеров тел. Она происходит под влиянием напряжений — сил, которые действуют на единицу площади сечения заготовок или деталей. Деформация металла обусловлена:

  • внешними силами;
  • усадкой;
  • структурными превращениями;
  • внутренними физико-механическими процессами.

Примеры прилагаемых к телу нагрузок:

  • сжатие – нагрузка прикладывается соосно по направлению к телу;
  • растяжение – возникает при продольном от тела приложении нагрузки (соосно или параллельно плоскости, в которой находятся точки крепления тела);
  • изгиб – нарушение прямолинейности главной оси тела;
  • кручение – возникает при приложении к телу крутящего момента.

Механизм и виды деформирования изучаются материаловедением, физикой твердого тела, кристаллографией.

Твердые тела подвержены двум видам деформации:

В таблице приведены сравнительные характеристики этих явлений.

Критерий сравнения Виды
Упругая Пластическая (остаточная, необратимая)
Поведение атомов кристаллической решетки под нагрузками · сдвигаются на промежутки меньшие, чем межатомное расстояние;· блоки кристалла поворачиваются незначительно · перемещаются на расстояния, большие межатомных;· в структуре возникают остаточные изменения;·  нет макроскопических нарушений сплошности металла
Деформирование формы и структуры после прекращения нагрузки устраняется полностью не устраняется
Вызывается действием напряжений · нормальных;· невысоких касательных больших касательных
Показатели сопротивления модуль упругости теоретическая прочность
Результат развития необратимость наступает, когда напряжения достигают предела упругости; упругая переходит в пластическую. возможность вязкого разрушения путем сдвига.

Пластическое деформирование ведет к модификациям в структурах металлов и их сплавов, а, следовательно, к изменениям их свойств.

Механизм возникновения

Возникновение пластической деформации обусловлено процессами, имеющими кристаллографическую природу: скольжением; двойникованием; межзеренным перемещением.

Скольжение

Происходит под воздействием касательных напряжений. Проявляется в виде перемещения одной части кристалла относительно другой. Этот процесс, в пределах кристалла, называется линейной дислокацией.

ЭТО ИНТЕРЕСНО:  Как сделать токарный станок по дереву

Когда линейная дислокация выходит из кристалла, на его поверхности возникает ступенька, равная одному периоду решетки. Увеличение напряжения ведет к перемещению новых атомных плоскостей. Образуются новые ступеньки единичных сдвигов на поверхности кристалла.

Чтобы дислокация продвинулась, не требуется разрывать все атомные связи в плоскости скольжения. Межатомная связь разрывается только в краевой зоне дислокации.

Современная теория основана на положениях:

  • последовательность распространения скольжения в плоскости сдвига;
  • место возникновения скольжения – это область нарушения кристаллической решетки, возникающая при нагружении кристалла.

Одно из свойств металла – теоретическая прочность. Ее используют для характеристики сопротивления пластическому деформированию. Она определяется силами межатомных связей в кристаллических решетках и значительно превышает реальную. Так для железа прочность:

  • 30 кг/мм — реальная;
  • 1340 кг/мм — теоретическая.

Различие вызвано тем, что для движения дислокации разрушаются лишь связи между атомами, находящимися у края дислокации, а не все атомные связи. Для этого необходимы меньшие усилия.

Двойникование

Это процесс образования в кристалле областей с закономерно измененной ориентацией кристаллической структуры. Двойникованием достигается незначительная степень деформации.

Двойниковые образования возникают по одному из двух механизмов:

  • являются зеркальной переориентацией структуры матрицы (материнского кристалла) в некоторой плоскости;
  • путем поворота матрицы на определенный угол вокруг кристаллографической оси.

Двойникование свойственно кристаллам, имеющим решетки:

  • гексагональную (магний, цинк, титан, кадмий);
  • объемно-центрированную (железо, вольфрам, ванадий, молибден).

Склонность к нему повышается при увеличении скорости деформации и снижении температуры.

Двойникование в металлах с кубической гранецентрированной решеткой (алюминий, медь) — результат отжига заготовки, которая подверглась пластическому деформированию.

Межзеренное перемещение

Такое изменение структуры материала идет вод воздействием растягивающего усилия. Процесс, в первую очередь, начинается в зерне, в котором направление легкого скольжения совпадает с направлением действия нагрузки. Это зерно будет растягиваться. Соседние зерна при этом будут разворачиваться до того момента, когда в них направление легкого скольжения также совместится с направлением силы. После они начнут деформироваться.

Результат межзеренного перемещения – волокнистая структура материала. Его механические свойства неодинаковы в разных направлениях:

  • пластичность выше в направлении, параллельном действию растягивающего усилия, чем в перпендикулярном направлении;
  • прочность имеет высокие показатели поперек приложению усилия, в продольном направлении – показатели ниже.

Эта разница свойств называется анизотропия

Виды пластической деформации

В зависимости от температуры и скорости процесса различают такие виды пластической деформации:

Одно из определяющих понятий — температура рекристаллизации. Она соответствует наименьшей температуре нагрева, при которой возможно возникновение новых зерен и определяется температурой плавления металла по формуле:

tрек=0,4×tпл.

Холодная деформация. Наклеп

Холодная деформация проходит при температурах, ниже tрек. В ее результате возникает искажение кристаллической структуры материала. Все зерна растягиваются в одном направлении. Растет прочность, а свойства пластичности снижаются. Это упрочнение называется наклеп (нагортовка). Он может быть:

  • полезным — наклепанный слой формируется специально, например в дробеметных машинах, накатыванием поверхностей роликами или шариками, чеканкой бойками, гидроабразивными методами;
  • неумышленным (вредным) – возникает при воздействии на металл существенных давлений со стороны обрабатывающего инструмента.

Причина наклепа заключается в развороте плоскостей скольжения и усилении искажений кристаллической решетки. Упрочненный, наклепанный металл быстро вступает в химические реакции, хорошо корродирует и склонен к коррозионному растрескиванию. Деформировать его затруднительно. Но наклеп повышает свойство сопротивления усталости.

В прокатном производстве этот тип деформации применяется для обработки давлением пластичных металлов, заготовок с малым сечением. Такие методы, как штамповка и волочение, позволяют достичь требуемой чистоты поверхности и обеспечить точность размеров.

Устранить изменения в структуре, которые появляются при холодной деформации, возможно термообработкой (отжигом).

При отжиге подвижность атомов повышается. В металле из множественных центров вырастают новые зерна, которые заменяют вытянутые, деформированные. Они характеризуются одинаковыми размерами во всех направлениях. Это эффект называется рекристаллизацией.

Горячая деформация

Горячая деформация имеет такие характерные признаки:

  1. Температура, выше tрек.
  2. Материал приобретает равноосную (рекристаллизованную) структуру.
  3. Сопротивление материала деформированию ниже в десять раз, чем при холодной.
  4. Отсутствует упрочнение.
  5. Свойства пластичности более высокие, чем при холодной.

Благодаря этим обстоятельствам, технологии горячей деформации применяются при обработке давлением крупных заготовок, малопластичных и сложно деформируемых материалов, литых заготовок. При этом используется оборудование меньшей мощности, чем для холодной деформации.

Недостаток процесса — возникновение окалины на поверхности заготовок. Это снижает показатели качества и возможность обеспечения требуемых размеров.

Процессы, после которых структура образцов рекристаллизована частично с признаками упрочнения, называются неполной горячей деформацией. Она является причиной неоднородности структуры металла, пониженных механических и пластических характеристик. Регулированием соответствия скорости деформирующего воздействия и рекристаллизации, можно достичь условий, при которых рекристаллизация распространится во всем объеме обрабатываемой заготовки.

Рекристаллизация начинается после окончания деформирования. При значительных температурах описанные явления происходят за секунды.

Таким образом, особенности воздействия холодной деформации используются для улучшения рабочих характеристик изделий. Сочетанием горячей и холодной деформаций, режимов термообработки можно воздействовать на изменение этих свойств в требуемых пределах.

Интенсивная пластическая деформация

Получить беспористые объемные металлические наноматериалы можно технологиями интенсивной пластической деформации (ИПД). Их суть заключается в деформировании металлических заготовок:

  • при относительно небольших температурах;
  • при повышенном давлении;
  • с высокими степенями деформации.

Это обеспечивает формирование гомогенной наноструктуры с большеугловыми границами зерен. Вопреки интенсивному воздействию, образцы не должны получать механические повреждения и разрушаться.

Технологии ИПД:

  1. кручение (ИПДК);
  2. разноканальное угловое прессование;
  3. всесторонняя ковка;
  4. мультиосевое деформирование;
  5. знакопеременный изгиб;
  6. аккумулированная прокатка.

Первые работы по созданию наноматериалов выполнены в 80х-90х годах ХХ века с использованием методов кручения и разноканального прессования.  Первый метод применим для небольших образцов – получаются пластинки диаметром 1020 мм и толщиной до 0,5 мм. Для того чтобы получить массивные наноконструкции используется второй метод, в основу которого положена деформация сдвигом.

Методы пластической деформации позволяют получать заготовки из стали, сплавов цветных металлов и других материалов (резина, керамика, пластмассы).

Они высокопроизводительные, позволяют обеспечить требуемое качество получаемых изделий, улучшить их механические свойства.

Источник: https://stankiexpert.ru/spravochnik/materialovedenie/plasticheskaya-deformaciya.html

Деформация сдвига: определение, общие сведения, расчеты — Токарь

17.12.2019

Деформация – изменение формы, размеров тела под действием приложенных к нему сил.

Линейная деформация – изменение линейных размеров тела, его рёбер. Линейные размеры тела могут изменяться одновременно в одном, двух или трёх взаимно перпендикулярных направлениях, что соответствует линейной, плоской и объёмной деформации. Линейная деформация, как правило, сопровождается изменением объёма тела.

Угловая деформация – изменение угловых размеров тела, углов наклона его граней. В результате угловой деформации происходит взаимное смещение граней. При этом изменяется только форма тела, объём сохраняется неизменным.

Линейная деформация связана преимущественно с действием нормальных напряжения, угловая – с действием касательных напряжений. [1]

Растяжение (сжатие) – деформация, возникающая под действием в поперечном сечении только продольной (растягивающей или сжимающей) силы.

Напряжение вдоль оси прямо пропорционально растягивающей (сжимающей) силе и обратно пропорционально площади поперечного сечения.

При упругой деформации соотношение между напряжением и относительной деформацией определяется законом Гука, при этом поперечные относительные деформации выводятся из продольных путём умножения их на коэффициент Пуассона.

Пластическая деформация, предшествующая разрушению части материала, описывается нелинейными законами (рисунок 1). [2]

Рисунок 1 – Диаграмма растяжения

Сдвиг – деформация, характеризующаяся взаимным смещением параллельных слоёв материала под действием сил, приложенных касательно к его поверхности, при неизменном расстоянии между слоями (рисунок 2).

Рисунок 2 – Сдвиг

Кручение – деформация, характеризующаяся взаимным поворотом поперечных сечений тела под действием пары сил (момента) в этих сечениях (рисунок 3).

Рисунок 3 – Кручение

Изгиб – деформация, при которой происходит изменение кривизны осей тела под действием изгибающих моментов в поперечных сечениях (рисунок 4).

Рисунок 4 – Изгиб

Вопросы для контроля

  1. Что такое деформация?
  2. Как классифицируют деформации?
  3. Что такое растяжение (сжатие)?
  4. Что такое сдвиг?
  5. Что такое кручение?
  6. Что такое изгиб?

Источник: https://nzmetallspb.ru/prochee/deformatsiya-sdviga-opredelenie-obshhie-svedeniya-raschety.html

Лекция № 6

угол сдвига

угловую деформацию

Теория деформированного состояния. Понятие о тензоре деформаций, главные деформации. Обобщенный закон Гука для изотропного тела. Деформация объема при трехосном напряженном состоянии. Потенциальная энергия деформации. Потенциальная энергия изменения формы и объема.

6.1. Деформированное состояние в точке. Главные деформации

Под действием внешних сил элементы машин и конструкций изменяют свои первоначальные форму и размеры. Как правило, такие изменения невелики, но в ряде случаев могут препятствовать нормальной работе.

Умение определять деформации, установление их допустимых величин имеют важное значение при проектировании и расчете конструкций.

Рассмотрение деформаций необходимо также для выяснения закона распределения напряжений в элементах конструкций, при решении статически неопределимых задач, для оценки работоспособности по условиям прочности.

Рассмотрим особенности деформирования материала в окрестности некоторой точки A деформируемого тела. Вырежем около точки A внутри сплошного тела бесконечно малый параллелепипед. В процессе деформации тела точки выделенного элемента будут перемещаться, сам он – деформироваться, то есть будут искажаться первоначально прямые углы между гранями и изменяться длины их ребер.

Отношение изменения длины ребра параллелепипеда к первоначальной дли-

не ребра определяет относительную линейную деформацию (εx, εy, εz) эле-

мента вдоль соответствующей оси

εx = ∆dx ; εy = ∆dy ; εz = ∆dz .
dx dy dz

Искажение первоначально прямого угла между ребрами элемента в плоскостях его граней определяет или (γxy, γyz, γzx)

всоответствующей плоскости, например, для плоскости xy (см. рисунок)

γxy =α+β. Если угол ϕ=90o–(α+β) – острый, то угол сдвига считается поло-

жительным. Растяжение ребер отвечает положительным значениям εx, εy, εz.

главными осями дефор-

Деформации элемента в трех ортогональных плоскостях представим в виде матрицы

εx
T 1
= γ yx
2
ε
1 γzx
2
1 1
γxy γxz
2 2
1
εy γyz ,
2
1
γzy
2 εz

которая, по аналогии с тензором напряжений, называется тензором малых деформаций, или сокращенно – тензором деформаций.

Деформированное состояние в точке – это совокупность относительных ли-

нейных деформаций и углов сдвига для всевозможных направлений осей, проведенных через данную точку.

При этом можно сделать утверждение, что деформированное состояние в точке вполне определено, если задан тензор деформаций для этой точки.

Аналогично напряженному состоянию можно указать такие три ортогональные направления (с индексами 1, 2, 3), называемые мации, для которых угловые деформации равны нулю, при этом линейные

деформации принимают свои экстремальные значения (ε1 – максимум, ε3 –

минимум, ε2 — минимакс), причем по алгебраической величине

ε1 ≥ε2 ≥ε3 .

Деформации ε1, ε2 ,ε3 в направлениях, для которых отсутствуют углы сдвига,

называются главными деформациями в точке.

Для главных направлений тензор деформаций получит наиболее удобный вид

ЭТО ИНТЕРЕСНО:  Токарный станок по дереву какой выбрать
ε1
T = ε .
ε 2 ε3

Компоненты тензора деформаций при повороте осей изменяются совершенно аналогично компонентам тензора напряжений (по законам тензорного преобразования). Так, при плоском напряженном состоянии деформации в некоторой плоскости на произвольной наклонной площадке можно выразить через главные деформации и угол наклона α следующим образом:

εα =ε1 cos2 α+ε2 sin2 α; 12 γα = ε1 −2 ε2 sin 2α.

Главные деформации можно выразить через произвольные деформации по двум взаимно перпендикулярным площадкам в виде:

εmax = εx +εy ± 1 (εx −εy ) 2 +4 (γxy 2) 2
,
2 2
min

а положение главных площадок будет задаваться углом α, который определяется из выражения:

tg2α= − 2 (0,5 γαβ ).

εα −εβ

6.2. Обобщенный закон Гука при объемном напряженном состоянии

Изучая простое растяжение-сжатие, мы выяснили, что относительная продольная деформация

ε= Eσ ,

а относительная поперечная деформация

ε′= −µ Eσ .

Эти два равенства выражали закон Гука (зависимость между напряжениями и деформациями) при простом растяжении или сжатии, то есть при линейном напряженном состоянии. Далее установим связь между напряжениями и деформациями в общем случае объемного напряженного состояния.

Рассмотрим деформацию элемента тела, выбрав этот элемент в виде прямоугольного параллелепипеда размерами a×b×c, по граням которого действуют главные напряжения σ1, σ2, σ3 (для вывода предполагаем, что все они положительны). Вследствие деформации ребра элемента изменяют свою длину и становятся равными a+∆a; b+∆b; c+∆c.

∆a ; = ∆b ; = ∆c
ε = ε 2 ε 3
1 a b c
называются главными деформациями и представляют собой относи-
тельные удлинения в главных направлениях.

Применяя принцип суперпозиции, деформацию ε1 можно представить следующим образом:

ε1 =ε1′ +ε1′′+ε1′′′,

где ε1′ – относительное удлинение в направлении σ1, вызванное действием только напряжений σ1 (при σ2=σ3=0); ε1′′ – относительное удлинение в направлении σ1, вызванное действием только напряжений σ2 (при σ1=σ3=0); ε1′′′

– относительное удлинение в направлении σ1, вызванное действием только напряжений σ3 (при σ1=σ2=0).

Поскольку деформации в направлении напряжения σ1 в данном случае являются продольными, а деформации в направлении напряжений σ2 и σ3 – поперечными (см. рисунок), то, применяя формулы закона Гука для продольных и поперечных деформаций при линейном напряженном состоянии, находим, что

ε1′ = σ1 , ε1′′= −µ σ2 , ε1′′′= −µ σ3 .
E E E
1
ε = σ1 −µ σ2 −µ σ3 = σ −µ ( σ 3 ) .
2
1 E E E E 1

Аналогично получим выражения и для двух других главных деформаций. В

результате запишем обобщенный закон Гука для изотропного тела, то есть зависимость между линейными деформациями и главными напряжениями в общем случае объемного напряженного состояния:

ε1 = E1 σ1 −µ (σ2 +σ3 ) ;

ε2 = E1 σ2 −µ (σ3 +σ1 ) ;

ε3 = E1 σ3 −µ (σ1 +σ2 ) .

Данные выражения справедливы и для относительных деформаций по любым трем взаимно перпендикулярным направлениям:

εx = E1 σx

εy = E1 σy

εz = E1 σz

−µ (σy +σz ) ;

−µ (σz +σx ) ;

−µ (σx +σy ) .

Источник: https://studfile.net/preview/5882775/

Виды деформаций деталей: растяжение, сжатие, сдвиг, кручение, изгиб

Деформация – изменение формы, размеров тела под действием приложенных к нему сил.

Линейная деформация – изменение линейных размеров тела, его рёбер. Линейные размеры тела могут изменяться одновременно в одном, двух или трёх взаимно перпендикулярных направлениях, что соответствует линейной, плоской и объёмной деформации. Линейная деформация, как правило, сопровождается изменением объёма тела.

Угловая деформация – изменение угловых размеров тела, углов наклона его граней. В результате угловой деформации происходит взаимное смещение граней. При этом изменяется только форма тела, объём сохраняется неизменным.

Линейная деформация связана преимущественно с действием нормальных напряжения, угловая – с действием касательных напряжений. [1]

Растяжение (сжатие) – деформация, возникающая под действием в поперечном сечении только продольной (растягивающей или сжимающей) силы.

Напряжение вдоль оси прямо пропорционально растягивающей (сжимающей) силе и обратно пропорционально площади поперечного сечения. При упругой деформации соотношение между напряжением и относительной деформацией определяется законом Гука, при этом поперечные относительные деформации выводятся из продольных путём умножения их на коэффициент Пуассона. Пластическая деформация, предшествующая разрушению части материала, описывается нелинейными законами (рисунок 1). [2]

Рисунок 1 – Диаграмма растяжения

Сдвиг – деформация, характеризующаяся взаимным смещением параллельных слоёв материала под действием сил, приложенных касательно к его поверхности, при неизменном расстоянии между слоями (рисунок 2).

Рисунок 2 – Сдвиг

Кручение – деформация, характеризующаяся взаимным поворотом поперечных сечений тела под действием пары сил (момента) в этих сечениях (рисунок 3).

Рисунок 3 – Кручение

Изгиб – деформация, при которой происходит изменение кривизны осей тела под действием изгибающих моментов в поперечных сечениях (рисунок 4).

Рисунок 4 – Изгиб

Деформация: виды деформации, пределы упругости и прочности

Частицы, из которых состоят твердые тела (как аморфные, так и кристаллические) постоянно совершают тепловые колебания около положений равновесия. В таких положениях энергия их взаимодействия минимальная. Если расстояние между частицами уменьшается, начинают действовать силы отталкивания, а если увеличиваться – то силы притяжения. Именно этими двумя силами обусловлены все механические свойства, которыми обладают твердые тела.

Определение 1

Если твердое тело изменяется под воздействием внешних сил, то частицы, из которых оно состоит, меняют свое внутреннее положение. Такое изменение называется деформацией.

Виды деформации

Различают деформации нескольких видов. На изображении показаны некоторые из них.

Рисунок 3.7.1. Некоторые виды деформаций твердых тел: 1 – деформация растяжения; 2 – деформация сдвига; 3 – деформация всестороннего сжатия.

Первый вид – растяжение или сжатие – является наиболее простым видом деформации. В таком случае изменения, происходящие с телом, можно описать при помощи абсолютного удлинения Δl, которое происходит под действием сил, обозначаемых F→. Взаимосвязь, существующая между силами и удлинением, обусловлена геометрическими размерами тела (в первую очередь толщиной и длиной), а также механическими свойствами вещества.

Определение 2

Если мы разделим величину абсолютного удлинения на первоначальную длину твердого тела, мы получим величину его относительного удлинения (относительной деформации).

Обозначим этот показатель ε и запишем следующую формулу:

ε=∆ll.

Определение 3

Относительная деформация тела растет при его растяжении и соответственно уменьшается при сжатии.

Если учесть, в каком именно направлении внешняя сила действует на тело, то мы можем записать, что F будет больше нуля при растяжении и меньше нуля при сжатии.

Механическое напряжение

Определение 4

Механическое напряжение твердого тела σ – это показатель, равный отношению модуля внешней силы к площади сечения твердого тела.

σ=FS.

Величину механического напряжения принято выражать в паскалях (Па) и измерять в единицах давления.

Важно понимать, как именно механическое напряжение и относительная деформация связаны между собой. Если отобразить их взаимоотношения графически, мы получим так называемую диаграмму растяжения. При этом нам нужно отмерить величину относительной деформации по оси x, а механическое напряжение – по оси y. На рисунке ниже представлена диаграмма растяжения, типичная для меди, мягкого железа и некоторых других металлов.

Рисунок 3.7.2. Типичная диаграмма растяжения для пластичного материала. Голубая полоса – область упругих деформаций.

В тех случаях, когда деформация твердого тела меньше 1% (малая деформация), то связь между относительным удлинением и механическим напряжением приобретает линейный характер. На графике это показано на участке Oa. Если напряжение снять, то деформация исчезнет.

Определение 5

Деформация, исчезающая при снятии напряжения, называется упругой.

Линейный характер связи сохраняется до определенного предела. На графике он обозначен точкой a.

Определение 6

Предел пропорциональности – это наибольшее значение σ=σпр, при котором сохраняется линейная связь между показателями σ и ε.

На данном участке будет выполняться закон Гука:

ε=1Eσ.

В формуле содержится так называемый модуль Юнга, обозначенный буквой E.

Если мы продолжим увеличивать напряжение на твердое тело, то линейный характер связи нарушится. Это видно на участке ab. Сняв напряжение, мы также увидим практически полное исчезновение деформации, то есть восстановление формы и размеров тела.

Предел упругости

Определение 7

Предел упругости – максимальное напряжение, после снятия которого тело восстановит свою форму и размер.

После перехода этого предела восстановления первоначальных параметров тела уже не происходит. Когда мы снимаем напряжение, у тела остается так называемая остаточная (пластическая) деформация.

Определение 8

Обратите внимание на участок диаграммы bc, где напряжение практически не увеличивается, но деформация при этом продолжается. Это свойство называется текучестью материала.

Предел прочности

Определение 9

Предел прочности – максимальное напряжение, которое способно выдержать твердое тело, не разрушаясь.

В точке e материал разрушается.

Определение 10

Если диаграмма напряжения материала имеет вид, соответствующий тому, что показан на графике, то такой материал называется пластичным. У них обычно деформация, при которой происходит разрушение, заметно больше области упругих деформаций. К пластичным материалам относится большинство металлов.

Определение 11

Если материал разрушается при деформации, которая превосходит область упругих деформаций незначительно, то он называется хрупким. Такими материалами считаются чугун, фарфор, стекло и др.

Деформация сдвига имеет аналогичные закономерности и свойства. Ее отличительная особенность состоит в направлении вектора силы: он направлен по касательной относительно поверхности тела. Для поиска величины относительной деформации нам нужно найти значение Δxl, а напряжения – FS (здесь буквой S обозначена та сила, которая действует на единицу площади тела). Для малых деформаций действует следующая формула:

∆xl=1GFS

Буквой G в формуле обозначен коэффициент пропорциональности, также называемый модулем сдвига. Обычно для твердого материала он примерно в 2-3 раза меньше, чем модуль Юнга. Так, для меди E=1,1·1011 Н/м2, G=0,42·1011 Н/м2.

Когда мы имеем дело с жидкими и газообразными веществами, то важно помнить, что у них модуль сдвига равен 0.

При деформации всестороннего сжатия твердого тела, погруженного в жидкость, механическое напряжение будет совпадать с давлением жидкости (p). Чтобы вычислить относительную деформацию, нам нужно найти отношение изменения объема ΔV к первоначальному объему V тела. При малых деформациях

∆VV=1Bp

Буквой B обозначен коэффициент пропорциональности, называемый модулем всестороннего сжатия. Такому сжатию можно подвергнуть не только твердое тело, но и жидкость и газ. Так, у воды B=2,2·109 Н/м2, у стали B=1,6·1011Н/м2. В Тихом океане на глубине 4 км давление составляет 4·107 Н/м2, а относительно изменения объема воды 1,8 %.

Для твердого тела, изготовленного из стали, значение этого параметра равно 0,025 %, то есть оно меньше в 70 раз. Это подтверждает, что твердые тела благодаря жесткой кристаллической решетке обладают гораздо меньшей сжимаемостью по сравнению с жидкостью, в которой атомы и молекулы связаны между собой не так плотно.

Газы могут сжиматься еще лучше, чем тела и жидкости.

От значения модуля всестороннего сжатия зависит скорость, с которой звук распространяется в данном веществе.

Опиши задание

Источник: https://Zaochnik.com/spravochnik/fizika/molekuljarno-kineticheskaja-teorija/deformatsija/

Деформация, все формулы и примеры

Деформация появляется в том случае, если разные части тела совершают разные перемещения. Так, например, если резиновый шнур тянуть за концы, то разные его части сместятся относительно друг друга, и шнур окажется деформированным (растянется, удлинится). При деформации изменяются расстояния между атомами или молекулами тел, поэтому появляются силы упругости.

ЭТО ИНТЕРЕСНО:  Как изначально назывался металл ниобий

Виды деформации твердого тела

Деформации можно разделить на упругие и неупругие. Упругой называют деформацию, которая исчезает при прекращении действия деформирующего воздействия. При таком виде деформации происходит возврат частиц из новых положений равновесия в кристаллической решетке в старые.

Неупругие деформации твердого тела называют пластическими. При пластической деформации происходит необратимая перестройка кристаллической решетки.

Кроме этого выделяют следующие виды деформации: растяжение (сжатие); сдвиг, кручение.

Одностороннее растяжение заключается в увеличении длины тела, при воздействии силы растяжения. Мерой такого вида деформации служит величина относительного удлинения ().

Деформация всестороннего растяжения (сжатия) проявляется в изменении (увеличении или уменьшении) объема тела. При этом форма тела не изменяется. Растягивающие (сжимающие) силы равномерно распределяются по всей поверхности тела. Характеристикой, такого вида деформации, является относительное изменение объема тела ().

Сдвиг – это вид деформации, при которой плоские слои твердого тела смещены параллельно друг другу. При этом виде деформации слои не изменяют свою форму и размер. Мерой данной деформации служит угол сдвига.

Деформация кручения состоит в относительном повороте параллельных друг другу сечений, перпендикулярных оси образца.

В теории упругости доказано, что все виды упругой деформации могут сводиться к деформациям растяжения или сжатия, которые происходят в один момент времени.

Закон Гука

Рассмотрим однородный стержень, имеющий длину l и площадь сечения S. К концам стержня приложены две силы равные по величине F, направленные по оси стержня, но в противоположные стороны. При этом длина стержня изменилась на величину .

Английским ученым Р. Гуком эмпирически было установлено, что для небольших деформаций относительное удлинение () прямо пропорционально напряжению ():

где E – модуль Юнга; – сила, которая действует на единичную площадь поперечного сечения проводника. Иначе закон Гука записывают как:

где k – коэффициент упругости. Для силы упругости, возникающей в стержне закон Гука имеет вид:

Линейная зависимость между и выполняется в узких пределах, при небольших нагрузках. При увеличении нагрузки зависимость становится нелинейной, а далее упругая деформация переходит в пластическую деформацию.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/fizika/deformaciya/

Что такое деформация? Виды деформации :

С процессом деформации человек начинает сталкиваться с первых дней своей жизни. Она позволяет нам чувствовать прикосновения. Ярким примером деформации из детства можно вспомнить пластилин. Существуют разные виды деформации. Физика рассматривает и изучает каждый из них. Для начала введём определение самого процесса, а затем постепенно рассмотрим возможные классификации и виды деформации, которые могут возникать в твёрдых объектах.

Определение

Деформация — это процесс перемещения частиц и элементов тела относительно взаимного местоположения в теле. Проще говоря, это физическое изменение внешних форм какого-либо объекта. Есть следующие виды деформации:

  • сдвиг;
  • кручение;
  • изгиб;
  • деформация сжатия.

Как и любую другую физическую величину, деформацию можно измерить. В простейшем случае используется следующая формула:

е=(р2-р1)/р1,

где е — это простейшая элементарная деформация (увеличение или уменьшение длины тела); р2 и р1 — длина тела после и до деформации соответственно.

Классификация

В общем случае можно выделить следующие виды деформации: упругие и неупругие. Упругие, или обратимые, деформации исчезают после того, как пропадает воздействующая на них сила. Основа этого физического закона используется в силовых тренажёрах, например, в эспандере. Если говорить о физической составляющей, то в основе лежит обратимое смещение атомов — они не выходят за пределы взаимодействия и рамки межатомных связей.

Неупругие (необратимые) деформации, как вы понимаете, являются противоположным процессом. Любая сила, которую приложили к телу, оставляет следы/деформацию. К этому типу воздействия относится и деформация металлов. При таком типе изменения формы зачастую могут меняться и другие свойства материала. Например, при деформации, вызванной охлаждением, может увеличиться прочность изделия.

Сдвиг

Как уже было сказано, существуют различные виды деформации. Они подразделяются по характеру изменения формы тела. В механике сдвигом называют такое изменение формы, при котором нижняя часть бруса закреплена неподвижно, а сила прикладывается касательно к верхней поверхности. Относительная деформация сдвига определяется по следующей формуле:

tgQ=Х12/В,

где Х12 — это абсолютный сдвиг слоёв тела (то есть расстояние, на которое сместился слой); В — это расстояние между закреплённым основанием и параллельным сдвинутым слоем.

Кручение

Если виды механических деформаций разделяли бы по сложности вычислений, то этот занял бы первое место. Такой вид изменения формы тела возникает при воздействии на него двух сил. При этом смещение любой точки тела происходит перпендикулярно к оси воздействующих сил. Говоря о таком типе деформации, следует упомянуть следующие величины, подлежащие вычислению:

  1. Ф — угол закручивания цилиндрического стержня.
  2. Т — момент действия.
  3. Л — длина стержня.
  4. Г — момент инерции.
  5. Ж — модуль сдвига.

Формула выглядит так:

Ф=(Т*Л)/(Г*Ж).

Другая величина, требующая вычисления, это относительный угол закручивания:

Q=Ф/Л (значения берутся из предыдущей формулы).

Изгиб

Это вид деформации, возникающий при изменении положения и формы осей бруса. Он также подразделяется на два типа — косой и прямой. Прямой изгиб — это такой вид деформации, при котором действующая сила приходится прямо на ось рассматриваемого бруса, в любом другом случае речь идёт о косом изгибе.

Растяжение-сжатие

Различные виды деформации, физика которых достаточно хорошо изучена, редко используются для решения различных задач. Однако при обучении в школе один из них зачастую применяется для определения уровня знаний учеников. Кроме этого названия, у данного типа деформации также присутствует другое, которое звучит так: линейное напряженное состояние.

Растяжение (сжатие) происходит, если сила, воздействующая на объект, проходит через центр его массы. Если говорить о визуальном примере, то растяжение приводит к увеличению длины стержня (иногда к разрывам), а сжатие — к уменьшению длины и возникновению продольных изгибов. Напряжение, вызываемое таким видом деформации, прямо пропорционально силе, воздейсвующей на тело, и обратно пропорционально площади поперечного сечения бруса.

Выводы

На самом деле существует множество способов вычисления деформации предмета. Различные виды деформации используют разные коэффициенты. Виды деформации отличаются не только по форме результата, но и по силам, воздействующим на объект, а для вычислений вам потребуются недюжинные усилия и знания в области физики. Надеемся, что эта статья поможет вам разобраться в понимании базовых физических законов, а также позволит продвинуться немного дальше в изучении этого раздела физики.

Источник: https://www.syl.ru/article/171481/new_chto-takoe-deformatsiya-vidyi-deformatsii

Деформация: сдвиг, растяжение, сжатие, кручение, изгиб. Примеры деформации

Деформация сдвига, кручения, изгиба – это изменение объема и формы тела при воздействии на него дополнительной нагрузки. При этом меняются расстояния между молекулами или атомами, приводящие к появлению сил упругости. Рассмотрим основные виды деформаций и их характеристики.

Сжатие и растяжение

Деформация растяжения связана с относительным либо абсолютным удлинением тела. В качестве примера можно привести однородный стержень, который закреплен с одного конца. При приложении вдоль оси силы, действующей в противоположном направлении, наблюдается растягивание стержня.

Сила же, прикладываемая по направлению к закрепленному концу стержня, приводит к сжатию тела. В процессе сжатия либо растяжения происходит изменение площади сечения тела.

Деформация растяжения – это изменения состояния объекта, сопровождающиеся смещением его слоев. Данный вид можно проанализировать на модели твердого тела, состоящего из параллельных пластин, которые между собой соединены пружинками. За счет горизонтальной силы осуществляется сдвиг пластин на какой-то угол, объем тела при этом не меняется. В случае упругих деформаций между силой, приложенной к телу, и углом сдвига выявлена прямо пропорциональная зависимость.

Деформации на примере организма человека

Тело человека подвергается серьезным механическим нагрузкам от собственных усилий и веса, появляющихся по мере физической деятельности. Вообще, деформация (сдвиг) характерна для человеческого организма:

  • Сжатие испытывает позвоночник, покровы ступней, нижние конечности.
  • Растяжению подвергаются связки, верхние конечности, мышцы, сухожилья.
  • Изгиб характерен для конечностей, костей таза, позвонков.
  • Кручениям подвергается во время поворота шея, при вращении ее испытывают кисти рук.

Но при превышении показателей предельного напряжения, возможен разрыв, например костей плеча, бедра. В связках же ткани соединяются настолько эластично, что допускается растягивание их в два раза. Кстати, деформация сдвига объясняет всю опасность передвижения женщин на высоких каблуках. Вес тела будет переноситься на пальцы, что приведет к повышению нагрузки на кости в два раза.

По результатам медицинских осмотров, проводимых в школах, из десяти детей лишь одного можно считать здоровым. Как деформации связаны с детским здоровьем? Сдвиг, кручение, сжатие – основные причины нарушения осанки у детей и подростков.

Прочность и деформации

Несмотря на многообразие живого и неживого мира, на создание человеком многочисленных материальных объектов, у всех предметов и живых существ есть общее свойство — прочность.

Под ней принято понимать способность материала сохраняться на протяжении длительного временного промежутка без видимых разрушений. Существует прочность конструкций, молекул, сооружений.

Эта характеристика уместна для кровеносных сосудов, человеческих костей, кирпичной колонны, стекла, воды. Деформация сдвига – вариант проверки сооружения на прочность.

Применение разных видов деформаций человеком имеет глубокие исторические корни. Все начиналось с желания соединить между собой палку и острый наконечник, чтобы охотиться на древних животных. Уже в те далекие времена человека интересовала деформация. Сдвиг, сжатие, растяжение, изгиб помогали ему создавать жилища, орудия труда, готовить пищу. По мере развития техники человечеству удалось использовать различные виды деформаций так, чтобы они приносили весомую пользу.

Заключение

Деформации, рассматриваемые в курсе школьной физики, оказывают влияние на процессы, происходящие в живом мире. В организмах человека, животных постоянно происходит кручение, изгиб, растяжение, сжатие. И для того чтобы осуществлять своевременную и полноценную профилактику проблем, связанных с осанкой или избыточным весом, медики используют зависимости, выявленные физиками при проведении фундаментальных исследований.

Например, прежде чем осуществлять протезирование нижних конечностей, выполняется детальный расчет максимальной нагрузки, на которую он должен быть рассчитан. Протезы подбираются для каждого человека индивидуально, так как важно учесть вес, рост и подвижность последнего.

При нарушениях осанки применяют специальные коррекционные пояса, основанные на использовании деформации сдвига.

Современная реабилитационная медицина не смогла бы существовать без использования физических законов и явлений, в том числе и без учета закономерностей различных видов деформаций.

Источник: https://FB.ru/article/294178/deformatsiya-sdvig-rastyajenie-sjatie-kruchenie-izgib-primeryi-deformatsii

Понравилась статья? Поделиться с друзьями:
Электропривод
Как правильно паять паяльником

Закрыть