Что такое чистый изгиб

Что такое Изгиб

что такое чистый изгиб

Изгиб — 1. Дугообразный поворот, закругление, кривизна.
2. перен. разг. Оттенок, нюанс.

Значение слова Изгиб по Ожегову:

Изгиб — Дугообразное искривление

Изгиб в Энциклопедическом словаре:

Изгиб — в сопротивлении материалов — вид деформации, характеризующийсяискривлением (изменением кривизны) оси или срединной поверхности элемента(балки, плиты и т. п.) под действием внешней нагрузки. Различают изгибы:чистый, поперечный, продольный, продольно-поперечный.

Значение слова Изгиб по словарю Символизма:

Изгиб — Символизирует облака, грозу и движение воды. Одно из возможных изменений спирали(см-). См. также лабиринт.

Значение слова Изгиб по словарю синонимов:

Изгиб — извилинаизвивизворот

излом

Значение слова Изгиб по словарю Ушакова:

ИЗГИБ, изгиба, м. 1. Дугообразное искривление, закругленный излом, затейливый поворот. На изгибе реки. Красивый изгиб лебединой шеи. Изгибы дороги. Их (сосен) корни затейливыми изгибами лежали, как серые мертвые змеи. Максим Горький. 2. перен., чаще мн. Изощренность, тонкости, тончайшие оттенки чего-н. (книжн.). Изгибы голоса. Изгибы мыслей.

Значение слова Изгиб по словарю Брокгауза и Ефрона:

Изгиб — способ деформации твердого тела, под влиянием действующих на него внешних сил, при котором изменяется кривизна какой-либо его геометрической оси. Теоретически разработан преимущественно И. брусьев и стержней, т. е. таких геометрических тел, поперечные размеры которых малы сравнительно с длиной.

Если на такое тело в различных точках его оси действуют внешние силы, направленные произвольно, то тело будет изгибаться и, наконец, при известной величине внешней силы, разрушится переломом в одном или нескольких местах.

Формулы, по которым определяется изменение вида тела при сгибании и поверяется его прочность при действии внешних изгибающих сил, выведены при следующих предположениях: а) поперечное сечение тела остается вдоль оси постоянным, или изменяется непрерывно, без скачков, б) внешние силы расположены в одной плоскости (плоскости действия сил), проходящей через ось бруса, в) поперечное сечение тела расположено относительно этой плоскости симметрично.

Для вывода практических формул допущена гипотеза, что при И. не изменяются размеры поперечного сечения тела и что каждое поперечное, плоское и перпендикулярное к продольной оси сечение до И. остается таковым же после сгибания, так что деформация характеризуется лишь изменением кривизны геометрической оси и вращением каждого перпендикулярного к этой оси плоского сечения бруса на некоторый угол.

Эти два допущения, хотя оба не вполне верные, дали возможность вывести практические формулы, достаточно согласные с опытами и имеющие обширное приложение. Обыкновенно представляют внешние силы параллельными и действующими в вертик. плоскости (нагрузка, собственный вес бруса, сопротивление опор), а самый брус расположенным горизонтально.

При этих условиях и на основании изложенных выше допущений, французский инженер и математик Навье, следуя Кулону (в его «Theorie des machines s i mples», напечатанной вторым изданием в 1821 г.), доказал, что при И. упругого призматического бруса, внутри его образуется некоторый слой волокон, длина которого не изменяется — нейтральный слой.

Пересечение этого слоя с вертикальной плоскостью, заключающей продольную ось бруса, образует изогнутую или нейтральную ось или упругую линию бруса. Навье доказал затем, что ось эта совпадает с геометрической осью тела, т. е. линией, соединяющей центры тяжести последовательных нормальных сечений. Из условий равновесия внешних изгибающих сил с внутренними силами сопротивления в сечении изгибаемого бруса Яков Бернулли вывел зависимость (в «Acta Erudit», 1694 г.

, р. 263): M &#961. = w где M — статический момент всех внешних сил, действующих с одной стороны на сечение бруса, &#961. — радиус кривизны точки пересечения упругой линии с взятым сечением, a w — постоянная величина, зависящая от вида сечения и материала бруса.

В настоящее время эта постоянная величина называется моментом упругости сечения и выражается w = ET произведением коэффициента упругости материала E на момент инерции сечения Т. Навье, приравняв статический момент внешних сил сумме статических моментов внутренних сил сопротивления, относительно нейтральной оси, получил равенство: М &#965.

= RI где M имеет вышеуказанное значение, I — момент инерции сечения относительно горизонтальной линии, проходящей через центр тяжести его, а R — напряжение волокна, расположенного в расстоянии &#965. от нейтральной оси рассматриваемого сечения.

Из двух приведенных уравнений, первое, в которое входит радиус кривизны, служит для определения вида изогнутой нейтральной оси, а следовательно и всего бруса, а второе дает возможность вычислить продольное растягивающее (для волокон под нейтральной осью) или сжимающее (для волокон над нейтральною осью) напряжение на единицу площади сечения, на расстоянии &#965. от нейтральной оси.

Наибольшее напряжение будет в крайних верхних и крайних нижних волокнах бруса, наиболее удаленных от нейтральной оси, и потому для поверки прочности изгибаемого бруса, в зависимости от размеров его, величины и распределения действующих на него сил, служит формула: R = (M &#965. 1)/I в которой вместо &#965. 1 надо вставить расстояние наиболее удаленного волокна от нейтральной оси в поверяемом сечении (напр.

для сечения с горизонтальной осью симметрии — половину высоты сечения), при чем R должно получиться не более допускаемого прочного сопротивления материала (в килограммах на квадратный миллиметр). Приложение теории И., установленной Навье, составляет обширный отдел строительной механики и имеет громадное практическое значение, так как оно служит основанием для расчета размеров и поверки прочности разнообразных частей сооружений: балок, мостов, элементов машин и пр.

Особый вид изгиба представляет случай длинных призматических стержней или стоек, которые сжимаются силами, направленными вдоль оси бруса. Вследствие того, что направление приложенных к концам стержня сжимающих сил на практике никогда не может совершенно точно совпадать с геометрической его осью, при чем материальный стержень не может быть безусловно однородным и обладать совершенно строгой математической формой, обыкновенно при достаточной длине тонкого стержня и действии значительной продольной силы, вместо простого сжатия происходит отклонение средней части стержня в сторону (продольный И.). Разрушение стержня при возрастании сжимающей силы произойдет не вследствие раздробления материала, как в случае сжатия короткой толстой призмы, а переломом. Теория продольного И. занимала еще знаменитого Эйлера, который для силы &#945., вызывающей начальное отклонение сжимаемого ею стержня, вывел равенство: &#945. = (EI)(&#960. 2/l2) (формула Эйлера), где l — длина стержня. Формула эта, однако, для практики имеет мало значения, и теоретическое решение вопроса о продольном И., не достигнутое Эйлером, также не удалось и позднейшим исследователям (Шварцу, Ренкину), так что в настоящее время еще пользуются эмпирическими правилами, основанными прямо на опытах и по которым, для обеспечения прочности сжимаемого стержня, при известной нагрузке, установлено определенное отношение между длиной стержня и площадью поперечного его сечения. в зависимости от способа закрепления концов стержня. А. Таненбаум.

Определение слова «Изгиб» по БСЭ:

Изгиб — в сопротивлении материалов, вид деформации, характеризующийся искривлением (изменением кривизны) оси или срединной поверхности деформируемого объекта (бруса, балки, плиты, оболочки и др.) под действием внешних сил или температуры. Применительно к прямому брусу различают И.: простой, или плоский, при котором внешние силы лежат в одной из главных плоскостей бруса (т. е.

плоскостей, проходящих через его ось и главные оси инерции поперечного сечения) (см. Моменты инерции). сложный, вызываемый силами, расположенными в разных плоскостях. косой, являющийся частным случаем сложного И. (см. Косой изгиб). В зависимости от действующих в поперечном сечении бруса силовых факторов (рис. 1, а, б) И. называется чистым (при наличии только изгибающих моментов) и поперечным (при наличии также и поперечных сил).

В инженерной практике рассматривается также особый случай И. — продольный И. (рис. 1, в), характеризующийся выпучиванием стержня под действием продольных сжимающих сил (см. Продольный изгиб). Одновременное действие сил, направленных по оси стержня и перпендикулярно к ней, вызывает продольно-поперечный И. (рис. 1, г).
Приближённый расчёт прямого бруса на действие И. в упругой стадии производится в предположении, что поперечные сечения бруса, плоские до И.

, остаются плоскими и после него (гипотеза плоских сечений). полагают также, что продольные волокна бруса при И. не давят друг на друга и не стремятся оторваться одно от другого. При плоском И. в поперечных сечениях бруса возникают нормальные и касательные напряжения. Нормальные напряжения &sigma. в произвольном волокне какого-либо поперечного сечения бруса (рис. 2), лежащем на расстоянии y от нейтральной оси, определяются формулой &sigma. = Mzy &frasl.

Iz, где Mz — изгибающий момент в сечении, а Iz — момент инерции поперечного сечения относительно нейтральной оси.Наибольшие нормальные напряжения возникают в крайних волокнах сечения

&sigma.max = Mz&mdash.&mdash.Wz   (Wz = Iz&mdash.&mdash.ymax  &ndash.

момент сопротивления поперечного сечения). Касательные напряжения &tau., возникающие при поперечном И., определяются по формуле Д. И. Журавского

&tau. = Qy Sz&mdash.&mdash.&mdash.Iz b  ,

где Qy — поперечная сила в сечении, Sz — статический момент относительно нейтральной оси части площади поперечного сечения, расположенной выше (или ниже) рассматриваемого волокна, b — ширина сечения на уровне рассматриваемого волокна. Характер изменения изгибающих моментов и поперечных сил по длине бруса обычно изображается графиками-эпюрами, по которым определяются их расчётные значения. Под влиянием И. ось бруса искривляется, ее кривизна определяется выражением

ЭТО ИНТЕРЕСНО:  Как разрезать зеркало в домашних условиях
1&mdash.&rho. = Mz&mdash.&mdash.E Iz  ,

где &rho. — радиус кривизны оси изогнутого бруса в рассматриваемом сечении. Е — модуль продольной упругости материала бруса. В случаях малых деформаций кривизна приближённо выражается второй производной от прогиба V, а поэтому между координатами изогнутой оси и изгибающим моментом существует дифференциальная зависимость

dІV&mdash.&mdash.dxІ = Mz&mdash.&mdash.E Iz  ,

называемая дифференциальным уравнением оси изогнутого бруса. Решением этого уравнения определяется Упругая линия балки (бруса).
Расчёт бруса на И. с учётом пластических деформаций приближённо производится в предположении, что при возрастании нагрузки (изгибающего момента) первоначально в крайних точках (волокнах), а затем и во всём поперечном сечении возникают пластические деформации. Распределение напряжений в предельном состоянии имеет вид двух прямоугольников с ординатами, равными пределу текучести материала &sigma.т, при этом кривизна бруса неограниченно возрастает.Такое состояние в сечении называется пластическим шарниром, а соответствующий ему момент является предельным и определяется по формуле

Mпр = &sigma.т(S1 + S2), в которой S1 и S2 — статические моменты сжатой и растянутой частей сечения относительно нейтральной оси.

Лит. см. при ст. Сопротивление материалов.Л. В. Касабьян.Рис. 1. Изгиб бруса: а — чистый: б — поперечный. в — продольный. г — продольно-поперечный.

Рис. 2. Чистый изгиб прямого бруса в упругой стадии: а — элемент бруса. б — поперечное сечение. в — эпюра нормальных напряжений.

Источник: https://xn----7sbbh7akdldfh0ai3n.xn--p1ai/izgib.html

Построение эпюр изгибающих моментов и поперечных сил для балок

что такое чистый изгиб

Очень важно уметь строить эпюры для балок, работающих на изгиб! Так как построение эпюр, является неотъемлемой частью любого прочностного расчёта и большинство элементов, из которых состоят современные инженерные сооружения, работают на изгиб. Поэтому в сопромате, очень много внимания уделяется как раз данным эпюрам: поперечных сил и изгибающих моментов.

Для краткости, их ещё называют эпюрой моментов и эпюрой сил. В этой статье, рассмотрим, как рассчитать эпюры традиционным методом, а также быстрым, с помощью которого эпюры рисуются за считаные минуты. В статье, построение показано на примере консольной и опирающейся на две опоры балки.

Показано, как учитывать сосредоточенные силы и моменты, а также распределённые нагрузки.

Построение эпюр для консольной балки

В качестве первого примера, возьмём балку, защемлённую с левого торца жёсткой заделкой и загруженной силой равной 5 кН и моментом равным 10 кНм. Длины участков даны на расчётной схеме. Нам предстоит рассмотреть два участка. Границами участков будут являться места приложения сил, моментов, начало и конец приложения распределённых нагрузок.

Первым делом, вводим систему координат, ось x пускаем вдоль оси балки, ось  y перпендикулярно ей, а ось z будет перпендикулярна плоскости, в которой размещены две первые оси и будет направлена «к нам».

В поперечных сечениях балки под действием приложенной нагрузки будут возникать два внутренних силовых фактора: поперечная сила и изгибающий момент. Наша задача выяснить, какой величины эти факторы во всех сечениях балки. Для наглядности, результат решения фиксируют в виде так называемых эпюр.

Эпюра строится по всей длине балки, ордината эпюры, под исследуемым сечением, показывает величину внутреннего усилия в этом сечении.

Эпюра поперечных сил

Начнём знакомство с поперечными силами с правила знаков для эпюр. После чего последовательно рассчитаем и построим эпюры для первого и второго участка балки.

Правило знаков для поперечной силы

При построении эпюр поперечных сил нужно придерживаться следующих правил знаков:

  • Если внешняя сила стремится повернуть балку по часовой стрелке, то поперечную силу считаем положительной. Эпюру откладываем выше нулевой линии со знаком плюс.
  • Если сила поворачивает балку против часовой стрелки, то поперечная сила будет отрицательной, и на эпюре будет откладывать ниже нулевой линии.

Возможно, сейчас будет немного непонятны данные правила, но прочитав следующие 2 блока статьи, вы поймёте, как применять эти правила в действии.

Поперечные силы на первом участке

Рассмотрим первым участок равный двум метрам. Сделаем мысленно сечение на расстоянии x1 от свободного торца и запишем законы изменения эпюр на этом участке. Законы эти выражаются из уравнений равновесия статики. Статика говорит нам, что тело находится в равновесии, если выполняются следующие условия:

Если суммы проекций всех сил на обе оси равны нулю и сумма моментов относительно точки равна нулю.

Для поперечной силы возьмём сумму проекций на ось y:

Из этого уравнения выражаем поперечную силу Q = F. Так как внешняя сила стремиться повернуть балку по часовой стрелке, то поперечную силу считаем положительной. Причем видно, из полученного закона поперечной силы, что Q постоянна по всей длине участка. Откладываем на эпюре Q = F = 5 кН. Эпюру подписываем как Qy, где y значит, что направление поперечные силы совпадет с направлением этой оси.

Поперечные силы на втором участке

На втором участке, поперечная сила будет равна: Qy2 =  Qy1;

Так как на этом участке, действует все та же сила F. Момент в уравнениях поперечных сил не учитывается, что является следствием уравнений статики.

Эпюра изгибающих моментов

В этом блоке статьи будем учиться строить эпюру моментов, здесь нюансов несколько больше, чем для эпюры поперечных сил. Начнём, пожалуй, с правил знаков, которые приняты для этой эпюры.

Правила знаков для изгибающих моментов

  • Если внешняя сила или момент растягивают «верхние волокна» то эпюра откладывается сверху.
  • Если сила или момент силы растягивают «нижние волокна», то эпюра откладывается ниже нулевой линии.

То есть, обычно, при построении эпюр изгибающий моментов знаки не указываются. Эти эпюры откладываются со стороны «растянутых волокон». Так, и удобнее читать эпюры и откладывать их.

Не всегда их откладывают так! Студентов некоторых специальностей, чаще всего машиностроительных, учат откладывать эпюры со стороны «сжатых волокон». Строители откладывают со стороны «растянутых волокон», в своих статьях я буду придерживаться этого правила, так как привык к нему.

Изгибающий момент на первом участке

Для изгибающих моментов на первом участке, запишем сумму моментов, относительно точки С, в которой ранее сделали сечение:

Отсюда получаем:

Это закон изменения изгибающих моментов по длине участка. В отличие от поперечных сил, изгибающие моменты будут меняться в пределах этого участка.

  • Если подставить вместо x1 — ноль, который соответствует началу участка, то получим, что М = 0.
  • Если подставим вместо x1 — 2 (конец участка), то получим:

С учётом вышеописанных правил знаков, мысленно представляем себе, что сила стремится растянуть верхние волокна, поэтому откладываем рассчитанные значения на эпюре сверху, получив эпюру в виде прямоугольного треугольника. Обязательно, подписываем эпюру как Mz, где z означает, что все изгибающие моменты поворачивают относительно этой оси.

Будет продолжение

Источник: https://ssopromat.ru/izgib/postroenie-epyur-izgibayushhix-momentov-i-poperechnyx-sil/

Изгиб

что такое чистый изгиб

Изгибом называется вид деформации, при котором искривляется продольная ось бруса. Прямые брусья, работающие на изгиб, называются балками. Прямым изгибом называется изгиб, при котором внешние силы, действующие на балку, лежат в одной плоскости (силовой плоскости), проходящей через продольную ось балки и главную центральную ось инерции поперечного сечения.

Изгиб называется чистым, если в любом поперечном сечении балки возникает только один изгибающий момент.

Изгиб, при котором в поперечном сечении балки одновременно действуют изгибающий момент и поперечная сила, называется поперечным. Линия пересечения силовой плоскости и плоскости поперечного сечения называется силовой линией.

Внутренние силовые факторы при изгибе балки

При плоском поперечном изгибе в сечениях балки возникают два внутренних силовых фактора: поперечная сила Q и изгибающий момент М. Для их определения используют метод сечений (см. лекцию 1). Поперечная сила Q в сечении балки равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для поперечных сил Q:

Изгибающий момент М в сечении балки равен алгебраической сумме моментов относительно центра тяжести этого сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для изгибающих моментов M:

Дифференциальные зависимости Журавского

Между интенсивностью q распределенной нагрузки, выражениями для поперечной силы Q и изгибающего момента М установлены дифференциальные зависимости:

На основе этих зависимостей можно выделить следующие общие закономерности эпюр поперечных сил Q и изгибающих моментов М:

Особенности эпюр внутренних силовых факторов при изгибе.

1. На участке балки, где нет распределенной нагрузки, эпюра Q представлена прямой линией, параллельной базе эпюре, а эпюра М — наклонной прямой (рис. а).

2. В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть скачок, равный значению этой силы, а на эпюре М —точка перелома (рис. а).

3. В сечении, где приложен сосредоточенный момент, значение Q не изменяется, а эпюра М имеет скачок, равный значению этого момента, (рис. 26, б).

ЭТО ИНТЕРЕСНО:  Что такое травление металла

4. На участке балки с распределенной нагрузкой интенсивности q эпюра Q изменяется по линейному закону, а эпюра М — по параболическому, причем выпуклость параболы направлена навстречу направлению распределенной нагрузки (рис. в, г).

5. Если в пределах характерного участка эпюра Q пересекает базу эпюры, то в сечении, где Q = 0, изгибающий момент имеет экстремальное значение Mmax или Mmin (рис. г).

Нормальные напряжения при изгибе

Определяются по формуле:

Моментом сопротивления сечения изгибу называется величина:

Опасным сечением при изгибе называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение.

Касательные напряжения при прямом изгибе

Определяются по формуле Журавского для касательных напряжений при прямом изгибе балки:

где Sотс — статический момент поперечной площади отсеченного слоя продольных волокон относительно нейтральной линии.

Расчеты на прочность при изгибе

1. При проверочном расчете определяется максимальное расчетное напряжение, которое сравнивается с допускаемым напряжением:

2. При проектном расчете подбор сечения бруса производится из условия:

3. При определении допускаемой нагрузки допускаемый изгибающий момент определяется из условия:

Далее по полученному значению [Mx] определяют допускаемые значения внешних поперечных нагрузок [Q] и внешних изгибающих моментов [Mвнеш]. Условие прочности имеет вид:

Перемещения при изгибе

Под действием нагрузки при изгибе ось балки искривляется. При этом наблюдается растяжение волокон на выпуклой и сжатие — на вогнутой частях балки. Кроме того, происходит вертикальное перемещение центров тяжести поперечных сечений и их поворот относительно нейтральной оси. Для характеристики деформации при изгибе используют следующие понятия:

Прогиб балки Y — перемещение центра тяжести поперечного сечения балки в направлении, перпендикулярном к ее оси.

Прогиб считают положительным, если перемещение центра тяжести происходит вверх. Величина прогиба меняется по длине балки, т.е. y = y (z)

Угол поворота сечения — угол θ, на который каждое сечение поворачивается по отношению к своему первоначальному положению. Угол поворота считают положительным при повороте сечения против хода часовой стрелки. Величина угла поворота меняется по длине балки, являясь функцией θ = θ (z).

Самыми распространёнными способами определения перемещений является метод Мора и правило Верещагина.

Метод Мора

Порядок определения перемещений по методу Мора:

1. Строится «вспомогательная система» и нагружается единичной нагрузкой в точке, где требуется определить перемещение. Если определяется линейное перемещение, то в его направлении прикладывается единичная сила, при определении угловых перемещений – единичный момент.

2. Для каждого участка системы записываются выражения изгибающих моментов Мf от приложенной нагрузки и М1 — от единичной нагрузки.

3. По всем участкам системы вычисляют и суммируют интегралы Мора, получая в результате искомое перемещение:

4. Если вычисленное перемещение имеет положительный знак, то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.

Правило Верещагина

Для случая, когда эпюра изгибающих моментов от заданной нагрузки имеет произвольное, а от единичной нагрузки – прямолинейное очертание, удобно использовать графоаналитический способ, или правило Верещагина.

где Af – площадь эпюры изгибающего момента Мf от заданной нагрузки; yc – ордината эпюры от единичной нагрузки под центром тяжести эпюры Мf ; EIx – жесткость сечения участка балки. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов.

Величина (Af*yc) считается положительной, если обе эпюры располагаются по одну сторону от балки, отрицательной, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента).

Сложная эпюра Мf должна быть разбита на простые фигуры(применяется так называемое «расслоение эпюры»), для каждой из которых легко определить ординату центра тяжести. При этом площадь каждой фигуры умножается на ординату под ее центром тяжести.

Источник: http://xn--80axfaegeoa.xn--p1ai/Theory/Theory-5.html

Чистый изгиб

Заказать решение

Исследование напряженного состояния балок мы начнем с простейшего случая, так называемого чистого изгиба.

Чистый изгиб есть частный случай изгиба, при котором в сечениях балки поперечная сила равна нулю. Чистый изгиб может иметь место только в том случае, когда собственный вес балки настолько мал, что его влиянием можно пренебречь. Для балок на двух опорах примеры нагрузок, вызывающих чистый

изгиб, представлены на рис. 88. На участках этих балок, где Q = 0 и, следовательно, М= const; имеет место чистый изгиб.

Усилия в любом сечении балки при чистом изгибе сводятся к паре сил, плоскость действия которой проходит через ось бал­ки, а момент постоянен.

Напряжения могут быть определены на основании следую­щих соображений.

1. Касательные составляющие усилий по элементарным пло­щадкам в поперечном сечении балки не могут быть приведены к паре сил, плоскость действия которой перпендикулярна к пло­скости сечения. Отсюда следует, что изгибающее усилие в сече­нии является результатом действия по элементарным площадкам

лишь нормальных усилий, а потому при чистом изгибе и напряжения сводятся только к нормальным.

2.  Чтобы усилия по элементарным площадкам свелись только к паре сил, среди них должны быть как положительные, так и отрицательные. Поэтому должны существовать как растянутые, так и сжатые волокна балки.

3.  Ввиду того, что усилия в различных сечениях одинаковы, то и напряжения в соответственных точках сечений одинаковы.

Рассмотрим какой-либо элемент вблизи поверхности (рис. 89, а). Так как по нижней его грани, совпадающей с по­верхностью балки, силы не приложены, то на ней нет и напря­жений. Поэтому и на верхней грани элемента нет напряжений, так как иначе элемент не находился бы и равновесии, Рассмат­ривая соседний с ним по высоте элемент (рис. 89,б), придем к

­такому же заключению и т. д. Отсюда следует, что по горизон­тальным граням любого элемента напряжения отсутствуют. Рас­сматривая элементы, входящие в состав горизонтального слоя, начиная с элемента у поверхности балки (рис.

90), придем к за­ключению, что и по боковым вертикальным граням любого эле­мента напряжения отсутствуют. Таким образом, напряженное состояние любого элемента (рис. 91,а), а в пределе и волокна, должно быть представлено так, как это показано на рис. 91,б, т. е.

оно может быть либо осевым растяжением, либо осевым сжатием.

4. В силу симметрии приложения внешних сил сечение по середине длины балки после деформации должно остаться пло­ским и нормальным к оси балки (рис. 92, а). По этой же причине и сечения в четвертях длины балки тоже остаются плоскими и нормальными к оси балки (рис.

92,б), если только крайние се­чения балки при деформации остаются плоскими и нормальными к оси балки. Аналогичное заключение справедливо и для сечений в восьмых длины балки (рис. 92, в) и т. д.

Следовательно, если при изгибе крайние сечения балки остаются плоскими, то и для любого сечения остается

справедли­вым утверждение, что оно после де­формации остается плоским и нор­мальным к оси изогнутой балки. Но в таком случае очевидно, что изменение удлинений волокон балки по ее высоте должно происходить не только непре­рывно, но и монотонно.

Если назвать слоем совокупность волокон, имеющих одинаковые удлинения, то из сказан­ного следует, что растянутые и сжатые волокна балки должны располагаться по разные стороны от слоя, в котором удлинения волокон равны нулю.

Бу­дем называть волокна, удлинения ко­торых равны нулю, нейтральными; слой, состоящий из нейтральных воло­кон, — нейтральным слоем; линию пе­ресечения нейтрального слоя с плоскостью поперечного сечения балки — нейтральной линией этого сечения.

Тогда на основании предыдущих рассуждений можно утверждать, что при чистом изгибе балки в каждом ее сечении имеется нейтральная линия, которая делит это сечение на две части (зоны): зону растяну­тых волокон (растянутую зону) и зону сжатых волокон (сжа­тую зону). Соответственно с этим в точках растянутой зоны се­чения должны действовать нормальные растягивающие напря­жения, в точках сжатой зоны — сжимающие напряжения, а в точках нейтральной линии напряжения равны нулю.

Таким образом, при чистом изгибе балки постоянного се­чения:

1)  в сечениях действуют только нормальные напряжения;

2) все сечение может быть разбито на две части (зоны) — растянутую и сжатую; границей зон является нейтральная линия сечения, в точках которой нормальные напряжения равны нулю;

3) любой продольный элемент балки (в пределе любое во­локно) подвергается осевому растяжению или сжатию, так что соседние волокна друг с другом не взаимодействуют;

4) если крайние сечения балки при деформации остаются плоскими и нормальными к оси, то и все ее поперечные сечения остаются плоскими и нормальными к оси изогнутой балки.

Напряженное состояние балки при чистом изгибе

Источник: http://funnystudy.ru/sopromat/100-sopromatizgib.html

Значение слова «Изгиб»

  • .
  • А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ъ
  • Ы
  • Э
  • Ю
  • Я

значением слова:

ЭТО ИНТЕРЕСНО:  Что такое растяжение и сжатие

ИЗГИБ, -а, м. Дугообразное искривление. И. реки. Изгибы души (перен.).

В словаре ефремовой

Ударение: изги́б м.

  1. Дугообразный поворот, закругление, кривизна.
  2. перен. разг. Оттенок, нюанс.

В словаре д.н. ушакова

ИЗГИ́Б, изгиба, ·муж.
1. Дугообразное искривление, закругленный излом, затейливый поворот. На изгибе реки. Красивый изгиб лебединой шеи. Изгибы дороги. «Их (сосен) корни затейливыми изгибами лежали, как серые мертвые змеи.» М.Горький.
2. перен., ·чаще мн. Изощренность, тонкости, тончайшие оттенки чего-нибудь (·книж. ). Изгибы голоса. Изгибы мыслей.

В словаре синонимов

извилина, извив, изворот, излом, складка, изгибание, выгиб, точка излома, кривизна; колено, ундация, сигмойда, ундуляция, лукоморье, прогиб, заворот, искривление, излучина, лука, сутулина, флексура, синклинорий, сгиб, петля, меандр, загиб, излука, кривуля

В словаре энциклопедии

в сопротивлении материалов — вид деформации, характеризующийся искривлением (изменением кривизны) оси или срединной поверхности элемента (балки, плиты и т. п.) под действием внешней нагрузки. Различают изгибы: чистый, поперечный, продольный, продольно-поперечный.

В словаре синонимов 2

сущизвилина, извив, изворот, излом

В словаре синонимы 4

выгиб, заворот, загиб, извив, извилина, изворот, излом, излука, излучина, искривление, колено, кривизна, лука, меандр, прогиб, сгиб, сигмойда, синклинорий, сутулина, ундация, ундуляция, флексура

В словаре полная акцентуированная парадигма по а. а. зализня

изги́б,изги́бы,изги́ба,изги́бов,изги́бу,изги́бам,изги́б,изги́бы,изги́бом,изги́бами,изги́бе,изги́бах

Источник: https://glosum.ru/%D0%97%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D0%B5-%D1%81%D0%BB%D0%BE%D0%B2%D0%B0-%D0%98%D0%B7%D0%B3%D0%B8%D0%B1

Техническая механика



Деформация изгиба характеризуется потерей прямолинейности или первоначальной формы линией балки (ее осью) при приложении внешней нагрузки. При этом, в отличие от деформации сдвига, линия балки изменяет свою форму плавно.
Легко убедиться, что на сопротивляемость изгибу влияет не только площадь поперечного сечения балки (бруса, стержня и т. д.), но и геометрическая форма этого сечения.

Поскольку изгиб тела (балки, бруса и т. п.) осуществляется относительно какой-либо оси, на сопротивляемость изгибу влияет величина осевого момента инерции сечения тела относительно этой оси.
Для сравнения — при деформации кручения сечение тела подвергается закручиванию относительно полюса (точки), поэтому на сопротивление кручению оказывает влияние полярный момент инерции этого сечения.

На изгиб могут работать многие элементы конструкций – оси, валы, балки, зубья зубчатых колес, рычаги, тяги и т. д.

В сопротивлении материалов рассматривают несколько типов изгибов:
— в зависимости от характера внешней нагрузки, приложенной к брусу, различают чистый изгиб и поперечный изгиб;
— в зависимости от расположения плоскости действия изгибающей нагрузки относительно оси бруса — прямой изгиб и косой изгиб.

***

Чистый и поперечный изгиб балки

Чистым изгибом называется такой вид деформации, при котором в любом поперечном сечении бруса возникает только изгибающий момент (рис. 2).
Деформация чистого изгиба будет, например, иметь место, если к прямому брусу в плоскости, проходящей через ось, приложить две равные по величине и противоположные по знаку пары сил. Тогда в каждом сечении бруса будут действовать только изгибающие моменты.

Если же изгиб имеет место в результате приложения к брусу поперечной силы (рис. 3), то такой изгиб называется поперечным. В этом случае в каждом сечении бруса действует и поперечная сила, и изгибающий момент (кроме сечения, к которому приложена внешняя нагрузка).

Если брус имеет хоть одну ось симметрии, и плоскость действия нагрузок совпадает с ней, то имеет место прямой изгиб, если же это условие не выполняется, то имеет место косой изгиб.

При изучении деформации изгиба будем мысленно представлять себе, что балка (брус) состоит из бесчисленного количества продольных, параллельных оси волокон. Чтобы наглядно представить деформацию прямого изгиба, проведем опыт с резиновым брусом, на котором нанесена сетка продольных и поперечных линий.

Подвергнув такой брус прямому изгибу, можно заметить, что (рис. 1):

— поперечные линии останутся при деформации прямыми, но повернутся под углом друг другу; — сечения бруса расширятся в поперечном направлении на вогнутой стороне и сузятся на выпуклой стороне;

— продольные прямые линии искривятся.

Из этого опыта можно сделать вывод, что: — при чистом изгибе справедлива гипотеза плоских сечений;

— волокна, лежащие на выпуклой стороне растягиваются, на вогнутой стороне – сжимаются, а на границе между ними лежит нейтральный слой волокон, которые только искривляются, не изменяя своей длины.

Полагая справедливой гипотезу о не надавливании волокон, можно утверждать, что при чистом изгибе в поперечном сечении бруса возникают только нормальные напряжения растяжения и сжатия, неравномерно распределенные по сечению.
Линия пересечения нейтрального слоя с плоскостью поперечного сечения называется нейтральной осью. Очевидно, что на нейтральной оси нормальные напряжения равны нулю.

***

Изгибающий момент и поперечная сила

Как известно из теоретической механики, опорные реакции балок определяют, составляя и решая уравнения равновесия статики для всей балки.

При решении задач сопротивления материалов, и определении внутренних силовых факторов в брусьях, мы учитывали реакции связей наравне с внешними нагрузками, действующими на брусья.

Для определения внутренних силовых факторов применим метод сечений, причем изображать балку будем только одной линией – осью, к которой приложены активные и реактивные силы (нагрузки и реакции связей).

Рассмотрим два случая:

1. К балке приложены две равные и противоположные по знаку пары сил.
Рассматривая равновесие части балки, расположенной слева или справа от сечения 1-1 (рис. 2), видим, что во всех поперечных сечениях возникает только изгибающий момент Ми, равный внешнему моменту. Таким образом, это случай чистого изгиба.

Изгибающий момент есть результирующий момент относительно нейтральной оси внутренних нормальных сил, действующих в поперечном сечении балки.

Обратим внимание на то, что изгибающий момент имеет разное направление для левой и правой частей балки. Это говорит о непригодности правила знаков статики при определении знака изгибающего момента.

2. К балке приложены активные и реактивные силы (нагрузки и реакции связей), перпендикулярные оси (рис. 3).

Рассматривая равновесие частей балки, расположенных слева и справа, видим, что в поперечных сечениях должны действовать изгибающий момент Ми и поперечная сила Q.

Из этого следует, что в рассматриваемом случае в точках поперечных сечений действуют не только нормальные напряжения, соответствующие изгибающему моменту, но и касательные, соответствующие поперечной силе.

Поперечная сила есть равнодействующая внутренних касательных сил в поперечном сечении балки. Обратим внимание на то, что поперечная сила имеет противоположное направление для левой и правой частей балки, что говорит о непригодности правила знаков статики при определении знака поперечной силы.

Изгиб, при котором в поперечном сечении балки действуют изгибающий момент и поперечная сила, называется поперечным.



У балки, находящейся в равновесии вод действием плоской системы сил, алгебраическая сумма моментов всех активных и реактивных сил относительно любой точки равна нулю; следовательно, сумма моментов внешних сил, действующих на балку левее сечения, численно равна сумме моментов всех внешних сил, действующих на балку правее сечения.
Таким образом, изгибающий момент в сечении балки численно равен алгебраической сумме моментов относительно центра тяжести сечения всех внешних сил, действующих на балку справа или слева от сечения.

У балки, находящейся в равновесии под действием плоской системы сил, перпендикулярных оси (т. е. системы параллельных сил), алгебраическая сумма всех внешних сил равна нулю; следовательно сумма внешних сил, действующих на балку левее сечения, численно равна алгебраической сумме сил, действующих на балку правее сечения.
Таким образом, поперечная сила в сечении балки численно равна алгебраической сумме всех внешних сил, действующих справа или слева от сечения.

Так как правила знаков статики неприемлемы для установления знаков изгибающего момента и поперечной силы, установим для них другие правила знаков, а именно: Если внешняя нагрузка стремится изогнуть балку выпуклостью вниз, то изгибающий момент в сечении считается положительным, и наоборот, если внешняя нагрузка стремится изогнуть балку выпуклостью вверх, то изгибающий момент в сечении считается отрицательным (рис 4,a).

Если сумма внешних сил, лежащих по левую сторону от сечения, дает равнодействующую, направленную вверх, то поперечная сила в сечении считается положительной, если равнодействующая направлена вниз, то поперечная сила в сечении считается отрицательной; для части балки, расположенной справа от сечения, знаки поперечной силы будут противоположными (рис. 4,b). Пользуясь этими правилами, следует мысленно представлять себе сечение балки жестко защемлённым, а связи отброшенными и замененными реакциями.

Еще раз отметим, что для определения реакций связей пользуются правилами знаков статики, а для определения знаков изгибающего момента и поперечной силы – правилами знаков сопротивления материалов.

Правило знаков для изгибающих моментов иногда называют «правилом дождя», имея в виду, что в случае выпуклости вниз образуется воронка, в которой задерживается дождевая вода (знак положительный), и наоборот – если под действием нагрузок балка выгибается дугой вверх, вода на ней не задерживается (знак изгибающих моментов отрицательный).

***

Материалы раздела «Изгиб»:

Деформация кручения



Дистанционное образование

  • Группа ТО-81
  • Группа М-81
  • Группа ТО-71

Олимпиады и тесты

Правильные ответы на вопросы Теста № 10

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

3

1

3

2

3

2

2

1

2

3

Источник: http://k-a-t.ru/tex_mex/2-izgib_1/

Понравилась статья? Поделиться с друзьями:
Электропривод