Как найти потенциальную энергию пружины

Слободянюк А.И. Физика 10/6.6

как найти потенциальную энергию пружины

книги

Предыдующая страница

6.6 Потенциальная энергия деформированной пружины

Деформированная (например, растянутая) пружина способна совершить работу. Действительно, если к растянутой пружине прикрепить некоторое тело, то пружина будет действовать на него с некоторой силой, под действием которой тело начнет смещаться, следовательно, будет совершена работа (рис. 86).

Сила, с которой пружина действует на тело, не является постоянной, поэтому для вычисления работы воспользуемся графическим методом. Построим график зависимости силы упругости F = kx от координаты, который является прямой линией (рис. 87). Площадь выделенного треугольника под графиком равна максимальной работе, которую может совершить пружина, понятно, что она равна

\(~A = \frac{1}{2} kx \cdot x = \frac{kx2}{2}\) . (1)

Для того чтобы пружине приписать потенциальную энергию, равную максимальной работе (1) необходимо показать, что эта работа не зависит от траектории движения тела.

Чтобы доказать это утверждение, достаточно рассмотреть работу на малом участке перемещения \(~\Delta \vec r\) при движении по произвольной траектории (рис. 88).

В данном случае эта работа \(~\delta A = \vec F \cdot \Delta \vec r = kx \cdot \Delta r \cos \alpha = kx \cdot \Delta x\) , полностью определяется изменением деформации пружины x, поэтому она не зависит от траектории движения тела.

Таким образом, силы упругости, подчиняющиеся закону Гука, являются потенциальными, и потенциальная энергия деформированной пружины определяется формулой

\(~U = \frac{kx2}{2}\) . (2)

Нулевой уровень потенциальной энергии, рассчитываемой по формуле (2), соответствует недеформированной пружине.

Подсчитаем, какую минимальную работу следует совершить, чтобы пружину, жесткостью k, растянуть на величину x (рис. 89). Чтобы деформировать пружину, к ней необходимо приложить внешнюю силу. Очевидно, что эта работа будет минимальная в том случае, когда внешняя приложенная сила в любой точке равна силе упругости, действующей со стороны пружины, поэтому работа этой силы будет равна \(~A = \frac{kx2}{2}\) , то есть увеличению потенциальной энергии пружины.

Следующая страница

Источник: http://www.physbook.ru/index.php/%D0%A1%D0%BB%D0%BE%D0%B1%D0%BE%D0%B4%D1%8F%D0%BD%D1%8E%D0%BA_%D0%90.%D0%98._%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_10/6.6

Энергия упругой деформации, теория и примеры

как найти потенциальную энергию пружины
Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Потенциальная энергия имеется у системы взаимодействующих тел. Но отдельное деформированное тело также обладает такого типа энергией. В таком случае потенциальная энергия зависит от взаимного расположения частей тела.

Энергия упругой деформации

Если груз, подвешенный на проволоке, растягивает подвес и опускается, значит, сила тяжести совершает работу. За счет такой работы увеличивается энергия деформированного тела, которое перешло из ненапряженного состояния в напряженное. Получается, что при деформации внутренняя энергия тела увеличивается.

Рост внутренней энергии тела заключается в увеличении потенциальной энергии, которая связана со взаимным расположением молекул тела. Если мы имеем дело с упругой деформацией, то после снятия нагрузки, дополнительная энергия исчезает, и за ее счет силы упругости совершают работу. В ходе упругой деформации температура твердых тел существенно не увеличивается.

В этом состоит их значительное отличие от газов, которые при сжатии нагреваются. При пластической деформации твердые тела могут значительно увеличивать свою температуру. В повышении температуры, следовательно, кинетической энергии молекул, отражается рост внутренней энергии тела при пластической деформации.

При этом увеличение внутренней энергии происходит также за счет работы сил, вызывающих деформацию.

Для того чтобы растянуть или сжать пружину следует выполнить работу () равную:

где – величина характеризующая изменение длины пружины (удлинение пружины); – коэффициент упругости пружины. Данная работа идут на изменение потенциальной энергии пружины ():

При записи выражения (2) считаем, что потенциальная энергия пружины без деформации равна нулю.

Потенциальная энергия упруго деформированного стержня

Потенциальная энергия упруго деформированного стержня при его продольной деформации равна:

где – модуль Юнга; – относительное удлинение; – объем стержня. Для однородного стержня при равномерной его деформации плотность энергии упругой деформации можно найти как:

Если деформация стержня является неравномерной, то при использовании формулы (3) для поиска энергии в точке стержня в эту формулу подставляют значение для рассматриваемой точки.

Плотность энергии упругой деформации при сдвиге находят, используя выражение:

где – модуль сдвига; – относительный сдвиг.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/fizika/energiya-uprugoj-deformacii/

Пружинный маятник — формулы и уравнения нахождения величин

как найти потенциальную энергию пружины

Пружинный маятник — колебательная система, которая состоит из тела, подвешенного к пружине. Эта система способна к совершению свободных колебаний.

Подобные системы довольно широко распространены за счет своей функциональной гибкости. Механизмы на основе таких маятников часто используются как элементы средств автоматики. 

В том числе они нашли применение в контактных взрывателях различных боеприпасов, в качестве акселерометров в контурах управления ракет. Так же они активно используются в предохранительных клапанах, устанавливаемых в трубопроводах.

Что такое пружинный маятник

Пружинным маятником в физике называют систему, совершающую колебательные движения под действием силы упругости. 

Приняты следующие обозначения:

  • m — масса тела;
  • k — коэффициент жесткости пружины.

Общий вид маятника:

Особенностями пружинных маятников являются:

  1. Сочетание тела и пружины. Массой пружины обычно в расчетах пренебрегают. Роль тела могут играть различные объекты. На них оказывают действие внешние силы. Груз может крепиться разными способами. Витки пружины, которыми она начинается и заканчивается, изготавливают с учетом повышенной нагрузки;

  2. У любой пружины есть исходное положение, предел сжатия и растяжения. При максимальном сжатии зазора между витками нет. Когда она максимально растянута, возникает необратимая деформация;

  3. Полная механическая энергия появляется с началом процесса обратимого деформирования. В этот момент на объект не оказывает действие сила упругости;

  4. Колебательные движения происходят под влиянием силы упругости. Масштаб влияния определяется несколькими причинами (тип сплава, расположение витков и т. д.). Так как может происходить и сжатие и растяжение, можно сделать вывод, что сила упругости действует в двух противоположных направлениях;

  5. От массы тела, величины и направления прикладываемой силы зависит скорость в плоскости его перемещения. Например, если подвесить груз к пружине и, растянув её, отпустить, то груз будет перемещаться в двух плоскостях: вертикально и горизонтально.

Виды пружинных маятников

Существует два типа данной системы:

  1. Вертикальный маятник — на тело довольно сильно влияет сила тяжести. Это влияние обуславливает увеличение инерционных движений, которые совершает тело в исходной точке.

  2. Горизонтальный — в таком варианте при движении на груз начинает действовать сила трения, возникающая по причине того, что груз лежит на поверхности.

Сила упругости в пружинном маятнике

До начала деформирования пружина находится в равновесном состоянии. Прикладываемое усилие может как растягивать, так и сжимать её. 

Применяя к пружинному маятнику закон сохранения энергии, мы можем рассчитать силу упругости в нем. Упругость прямо пропорциональна расстоянию, на которое сместился груз.

Расчёт силы упругости может быть проведен таким образом:

Fупр = — k*x

где k — коэффициент жесткости пружины (Н\м),

x – смещение (м).

Уравнения колебаний пружинного маятника

Свободные колебания пружинного маятника описываются с помощью гармонического закона. 

Если допустить вероятность того, что колебания идут вдоль оси Х, и при этом выполняется закон Гука, то уравнение примет вид:

F(t) = ma(t) = — mw2x(t),

где w — радиальная частота гармонического колебания.

Для проведения расчета колебаний, учитывая все вероятности, применяют следующие формулы:

Период и частота свободных колебаний пружинного маятника

При разработке проектов всегда определяется период колебаний и их частота. Для их измерения используются известные в физике формулы.

Изменение циклической частоты покажет формула, приведенная на рисунке:

Факторы, от которых зависит частота:

  1. Коэффициент упругости. На этот коэффициент влияет количество витков, их диаметр, расстояние между ними, длина пружины, жесткость используемого сплава и т. д.

  2. Масса груза. От этого фактора зависит возникающая инерция и скорость перемещения.

Амплитуда и начальная фаза пружинного маятника

Учитывая начальные условия и рассчитав уравнение колебаний, можем точно описать колебания пружинного маятника. 

В качестве начальных условий используются: амплитуда (А) и начальная фаза колебаний (ϕ).

Энергия пружинного маятника

При рассмотрении колебания тел учитывают, что груз движется прямолинейно. Полная механическая энергия тела в каждой точке траектории является константой и равняется сумме его потенциальной энергии и кинетической энергии.

Потенциальная энергия:

Кинетическая энергия:

Полная энергия:

Расчет имеет особенности. При его проведении нужно учитывать несколько условий:

  1. Колебания проходят в двух плоскостях: вертикальной и горизонтальной.

  2. В качестве равновесного положения выбирается ноль потенциальной энергии. Находясь в этом положении пружина сохраняет свою форму.

  3. Влияние силы трения при расчете не учитывают.

Дифференциальное уравнение гармонических колебаний пружинного маятника 

Отметим, что пружинный маятник — это обобщенное определение. Скорость движения груза (тела) напрямую зависит от комплекса условий, в том числе приложенного к нему усилия.

Источник: https://nauka.club/fizika/pruzhinnyy-mayatnik.html

Чему равна потенциальная энергия упруго деформированной пружины

  • Ядерная физика (3)
    • Квадратный корень, рациональные переходы (1)
    • Квадратный трехчлен (1)
    • Координатный метод в стереометрии (1)
    • Логарифмы (1)
    • Логарифмы, рациональные переходы (1)
    • Модуль (1)
    • Модуль, рациональные переходы (1)
    • Планиметрия (1)
    • Прогрессии (1)
    • Производная функции (1)
    • Степени и корни (1)
    • Стереометрия (1)
    • Тригонометрия (1)
    • Формулы сокращенного умножения (1)

    Потенциальная энергия упруго деформированного тела — физическая величина, равная половине произведения жесткости тела на квадрат его деформации.

    Энергию деформированного упругого тела также называют энергией положения или потенциальной энергией (ее называют чаще упругой энергией), так как она зависит от взаимного положения частей тела, например витков пружины.

    Работа, которую может совершить растянутая пружина при перемещении ее конца, зависит только от начального и конечного растяжений пружины.

    Найдем работу, которую может совершить растянутая пружина, возвращаясь к не растянутому состоянию, то есть найдем упругую энергию растянутой пружины.

    Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

    ЭТО ИНТЕРЕСНО:  Как сделать ласточкин хвост

    Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, то есть чем больше коэффициент упругости, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной силе, растянувшей ее. Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на путь точки приложения силы.

    Потенциальная энергия :

    Кинетическая энергия

    Тут мы использовали :

    — Потенциальная энергия упруго деформированного тела

    — Коэффициент упругости пружины

    — Деформация пружины

    Груз мас­сой m, под­ве­шен­ный к пру­жи­не, со­вер­ша­ет ко­ле­ба­ния с пе­ри­о­дом T и ам­пли­ту­дой Что про­изой­дет с пе­ри­о­дом ко­ле­ба­ний, мак­си­маль­ной по­тен­ци­аль­ной энер­ги­ей пру­жи­ны и ча­сто­той ко­ле­ба­ний, если при не­из­мен­ной ам­пли­ту­де умень­шить массу груза?

    Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

    3) не из­ме­ни­лась.

    За­пи­ши­те в таб­ли­цу вы­бран­ные цифры для каж­дой фи­зи­че­ской ве­ли­чи­ны. Цифры в от­ве­те могут по­вто­рять­ся.

    Пе­ри­од ко­ле­ба­ний свя­зан с мас­сой груза и жест­ко­стью пру­жи­ны k со­от­но­ше­ни­ем При умень­ше­нии массы пе­ри­од ко­ле­ба­ний умень­шит­ся. Ча­сто­та об­рат­но про­пор­ци­о­наль­на пе­ри­о­ду, зна­чит, ча­сто­та уве­ли­чит­ся.

    С мак­си­маль­ной по­тен­ци­аль­ной энер­ги­ей пру­жи­ны все не­мно­го слож­нее. Для от­ве­та на во­прос, что с ней про­изой­дет су­ще­ствен­но, что пру­жи­на ори­ен­ти­ро­ва­на вер­ти­каль­но (для го­ри­зон­таль­но­го пру­жин­но­го ма­ят­ни­ка при не­из­мен­ной ам­пли­ту­де дан­ная ве­ли­чи­на, есте­ствен­но, оста­нет­ся не­из­мен­ной).

    Дей­стви­тель­но, когда к вер­ти­каль­ной пру­жи­не под­ве­ши­ва­ют груз, она сразу не­мно­го рас­тя­ги­ва­ет­ся, чтобы урав­но­ве­сить силу тя­же­сти, дей­ству­ю­щую на груз. Опре­де­лим это на­чаль­ное рас­тя­же­ние: Имен­но это со­сто­я­ние яв­ля­ет­ся по­ло­же­ни­ем рав­но­ве­сия для вер­ти­каль­но­го пру­жин­но­го ма­ят­ни­ка, ко­ле­ба­ния про­ис­хо­дят во­круг него, груз под­ни­ма­ет­ся и опус­ка­ет­ся из этого по­ло­же­ния на ве­ли­чи­ну ам­пли­ту­ды.

    При дви­же­нии вниз из по­ло­же­ния рав­но­ве­сия пру­жи­на про­дол­жа­ет рас­тя­ги­вать­ся, а зна­чит, по­тен­ци­аль­ная энер­гия пру­жи­ны про­дол­жа­ет уве­ли­чи­вать­ся. При дви­же­нии вверх из по­ло­же­ния рав­но­ве­сия, спер­ва де­фор­ма­ция пру­жи­ны умень­ша­ет­ся, а если то пру­жи­ны нач­нет сжи­мать­ся.

    Мак­си­маль­ной по­тен­ци­аль­ной энер­гии пру­жи­ны со­от­вет­ству­ет со­сто­я­ние, когда она мак­си­маль­но рас­тя­ну­та, а зна­чит, в нашем слу­чае, это по­ло­же­ние, когда груз опу­стил­ся мак­си­маль­но вниз. Таким об­ра­зом, мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны равна

    Из этой фор­му­лы видно, что для вер­ти­каль­но­го пру­жин­но­го ма­ят­ни­ка при не­из­мен­ной ам­пли­ту­де и умень­ше­нии массы груза мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны умень­шит­ся.

    Встречается довольно большое количество различных механизмов, частью которых является пружина. Этот конструктивный элемент характеризуется довольно большим количество различных особенностей, которые должны учитываться. Примером можно назвать понятие потенциальной энергии пружины. Рассмотрим все особенности данного вопроса подробнее.

    Понятие потенциальной энергии пружины

    При рассмотрении того, что такое потенциальная энергия пружины следует уделить внимание самому понятию – свойство, которым могут обладать тела при нахождении на земле. Этот момент определяет то, что ей могут обладать самые разнообразные изделия, в том числе рассматриваемое. К особенностям рассматриваемого понятия можно отнести следующее:

    1. Потенциальная энергия в рассматриваемом случае формируется по причине изменения состояния. Даже при несущественном смещении витков относительно друг друга считается изменением состояния подобного изделия.
    2. Для того чтобы изменить состояние изделия совершается определенное действие. Зачастую для этого проводится прикладывание усилия. При этом важно провести расчет требуемого усилия для сжатия витков.
    3. После выполнения определенной работы большая часть усилия, которое было потрачено на выполнение действия высвобождается при определенных обстоятельствах. Как правило, этот процесс предусматривает возврат витков в свое первоначальное положение. Это достигается за счет особой формы изделия, а также применения соответствующего материала, который обладает повышенной упругостью. Именно за счет этого свойства зачастую проводится установка рассматриваемого изделия. Показатель может достигать весьма высоких показателей, которой достаточно для реализации различных задач. Распространенным примером можно назвать установку пружины в запорных и предохранительных элементах, которые отвечают за непосредственное возращение запорного элемента в требуемое положение.

    Она также широко применяется при создании самых различных механизмов, к примеру, заводных часов. При проектировании различных механизмов учитывается закон сохранения механической силы, которая характеризуется довольно большим количеством особенностей.

    Закон сохранения механической энергии

    Согласно установленным законам механическое воздействие консервативной механической системы сохраняется во времени. Этот момент определяет то, что потенциальная энергия деформированной пружины не может возникнуть сама или исчезнуть куда-нибудь. Именно поэтому для ее создания нужно приложить соответствующее усилие.

    Рассматриваемый закон относится к категории интегральных равенств. Эта закономерность определяет то, что он складывается их действия дифференциальных законов, является свойством или признаком совокупного воздействия.

    Для проведения соответствующих расчетов должна применяться определенная формула. Сила, с которой оказывается воздействие, не является постоянной. Именно поэтому для ее вычисления применяется графический метод. Самая простая зависимость может быть описана следующим образом: F=kx. При применении подобной зависимости построенная координатная линия будет представлена прямой линией, которая расположена под углом относительно системы координат.

    Приписать подобному устройству потенциальную энергию можно только в том случае, если она равна максимальной работе и не зависит от условной траектории движения. Проведенные исследования указывают на то, что подобная работа подчиняется закону Гука. Для определения основного показателя применяется следующая формула: U=kk2/2.

    Для деформирования витков к ним должно быть приложено определенное усилие, так как в противном случае кинетическая сила не возникнет.

    Динамика твердого тела

    Некоторые определить выражения (определяется при применении наиболее подходящих формул) можно только с учетом правил, касающихся динамики твердых объектов. Этому вопросу посвящен целый раздел. При расчете потенциальной энергии сжатой пружины также применяются некоторые законы этого раздела

    Динамика твердого тела рассматривается по причине того, что в большинстве случаев механизм совершает действие, связанное с непосредственным перемещением какого-либо объекта.

    Рассматриваемое свойство изделия может изменяться в зависимости от динамики твердого тела. Это связано с тем, что на изделие оказывается и воздействие со стороны окружающей среды. Примером можно назвать трение или нагрев.

    Момент силы и момент импульса относительно оси

    Рассмотрение деформации пружины проводится также с учетом момента силы и импульса относительно оси. Эти два параметра позволяют рассчитать все требуемые показатели с более высокой точностью. Довольно распространенным вопросом можно назвать чему равен момент силы – векторная величина, которая определяется векторному произведению радиуса на вектор приложенной силы.

    Момент импульса – величина, которая применяется для определения количества вращательного движения.

    Среди особенностей подобного показателя можно отметить следующее:

    1. Масса вращения. Объект может характеризоваться различной массой.
    2. Распределение относительно оси. Ось может быть расположена на различном расстоянии от самого объекта.
    3. Скорость вращения. Это свойство считается наиболее важным, в зависимости от конструкции он может быть постоянным или изменяться.

    Расчет каждого показателя проводится при применении соответствующей формулы. В некоторых случаях проводится измерение требуемых вводных данных, без которых провести вычисления не получится.

    Читать еще:  Заточка керамических ножей в домашних условиях видео

    Уравнение движения вращающегося тела

    Рассматривая подобное свойство также следует уделить внимание уравнению движения вращающегося тела. Не стоит забывать о том, что вращательное движение твердого тела характеризуется наличием как минимум двух точек. При этом отметим нижеприведенные особенности:

    1. Прямая, которая соединяет две точки, выступает в качестве оси вращения.
    2. Есть возможность провести определение места положения объекта в случае вычисления заднего угла между двумя плоскостями.
    3. Наиболее важным показателем можно назвать угловую скорость. Она связана с инерцией, которая возникает при вращении объекта.

    Для вычисления угловой скорости применяется специальная формула, которая выглядит следующим образом: w=df/dt. В некоторых случаях проводится вычисление углового ускорения, которое также является важной величиной.

    Источник: https://moy-instrument.ru/masteru/chemu-ravna-potentsialnaya-energiya-uprugo-deformirovannoj-pruzhiny.html

    Кинетическая энергия пружины: формула и определение — Токарь

    17.12.2019

    Пружинный маятник — колебательная система, которая состоит из тела, подвешенного к пружине. Эта система способна к совершению свободных колебаний.

    Подобные системы довольно широко распространены за счет своей функциональной гибкости. Механизмы на основе таких маятников часто используются как элементы средств автоматики. 

    В том числе они нашли применение в контактных взрывателях различных боеприпасов, в качестве акселерометров в контурах управления ракет. Так же они активно используются в предохранительных клапанах, устанавливаемых в трубопроводах.

    Потенциальная энергия пружины

    Встречается довольно большое количество различных механизмов, частью которых является пружина. Этот конструктивный элемент характеризуется довольно большим количество различных особенностей, которые должны учитываться. Примером можно назвать понятие потенциальной энергии пружины. Рассмотрим все особенности данного вопроса подробнее.

    Какие величины определяют потенциальную энергию растянутой пружины

    • Кинематика (19)
    • Динамика и статика (32)
    • Гидростатика (5)
  • Молекулярная физика (25)
  • Уравнение состояния (3)
  • Термодинамика (15)
  • Броуновское движение (6)
  • Прочие формулы по молекулярной физике (1)
  • Колебания и волны (22)
  • Оптика (9)
  • Геометрическая оптика (3)
  • Физическая оптика (5)
  • Волновая оптика (1)
  • Электричество (39)
  • Атомная физика (15)
  • Ядерная физика (3)
    • Квадратный корень, рациональные переходы (1)
    • Квадратный трехчлен (1)
    • Координатный метод в стереометрии (1)
    • Логарифмы (1)
    • Логарифмы, рациональные переходы (1)
    • Модуль (1)
    • Модуль, рациональные переходы (1)
    • Планиметрия (1)
    • Прогрессии (1)
    • Производная функции (1)
    • Степени и корни (1)
    • Стереометрия (1)
    • Тригонометрия (1)
    • Формулы сокращенного умножения (1)

    Потенциальная энергия упруго деформированного тела — физическая величина, равная половине произведения жесткости тела на квадрат его деформации.

    Энергию деформированного упругого тела также называют энергией положения или потенциальной энергией (ее называют чаще упругой энергией), так как она зависит от взаимного положения частей тела, например витков пружины.

    Работа, которую может совершить растянутая пружина при перемещении ее конца, зависит только от начального и конечного растяжений пружины.

    Найдем работу, которую может совершить растянутая пружина, возвращаясь к не растянутому состоянию, то есть найдем упругую энергию растянутой пружины.

    Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

    ЭТО ИНТЕРЕСНО:  Плотник это человек который

    Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, то есть чем больше коэффициент упругости, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной силе, растянувшей ее. Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на путь точки приложения силы.

    Потенциальная энергия :

    Кинетическая энергия

    Тут мы использовали :

    — Потенциальная энергия упруго деформированного тела

    — Коэффициент упругости пружины

    Читать также:  Натуральный и синтетический каучук кратко

    — Деформация пружины

    Груз мас­сой m, под­ве­шен­ный к пру­жи­не, со­вер­ша­ет ко­ле­ба­ния с пе­ри­о­дом T и ам­пли­ту­дой Что про­изой­дет с пе­ри­о­дом ко­ле­ба­ний, мак­си­маль­ной по­тен­ци­аль­ной энер­ги­ей пру­жи­ны и ча­сто­той ко­ле­ба­ний, если при не­из­мен­ной ам­пли­ту­де умень­шить массу груза?

    Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

    3) не из­ме­ни­лась.

    За­пи­ши­те в таб­ли­цу вы­бран­ные цифры для каж­дой фи­зи­че­ской ве­ли­чи­ны. Цифры в от­ве­те могут по­вто­рять­ся.

    Пе­ри­од ко­ле­ба­ний Мак­си­маль­ная по­тен­ци­аль­ная

    энер­гия пру­жи­ны

    Ча­сто­та ко­ле­ба­ний

    Пе­ри­од ко­ле­ба­ний свя­зан с мас­сой груза и жест­ко­стью пру­жи­ны k со­от­но­ше­ни­ем При умень­ше­нии массы пе­ри­од ко­ле­ба­ний умень­шит­ся. Ча­сто­та об­рат­но про­пор­ци­о­наль­на пе­ри­о­ду, зна­чит, ча­сто­та уве­ли­чит­ся.

    С мак­си­маль­ной по­тен­ци­аль­ной энер­ги­ей пру­жи­ны все не­мно­го слож­нее. Для от­ве­та на во­прос, что с ней про­изой­дет су­ще­ствен­но, что пру­жи­на ори­ен­ти­ро­ва­на вер­ти­каль­но (для го­ри­зон­таль­но­го пру­жин­но­го ма­ят­ни­ка при не­из­мен­ной ам­пли­ту­де дан­ная ве­ли­чи­на, есте­ствен­но, оста­нет­ся не­из­мен­ной).

    Дей­стви­тель­но, когда к вер­ти­каль­ной пру­жи­не под­ве­ши­ва­ют груз, она сразу не­мно­го рас­тя­ги­ва­ет­ся, чтобы урав­но­ве­сить силу тя­же­сти, дей­ству­ю­щую на груз. Опре­де­лим это на­чаль­ное рас­тя­же­ние: Имен­но это со­сто­я­ние яв­ля­ет­ся по­ло­же­ни­ем рав­но­ве­сия для вер­ти­каль­но­го пру­жин­но­го ма­ят­ни­ка, ко­ле­ба­ния про­ис­хо­дят во­круг него, груз под­ни­ма­ет­ся и опус­ка­ет­ся из этого по­ло­же­ния на ве­ли­чи­ну ам­пли­ту­ды.

    При дви­же­нии вниз из по­ло­же­ния рав­но­ве­сия пру­жи­на про­дол­жа­ет рас­тя­ги­вать­ся, а зна­чит, по­тен­ци­аль­ная энер­гия пру­жи­ны про­дол­жа­ет уве­ли­чи­вать­ся. При дви­же­нии вверх из по­ло­же­ния рав­но­ве­сия, спер­ва де­фор­ма­ция пру­жи­ны умень­ша­ет­ся, а если то пру­жи­ны нач­нет сжи­мать­ся.

    Мак­си­маль­ной по­тен­ци­аль­ной энер­гии пру­жи­ны со­от­вет­ству­ет со­сто­я­ние, когда она мак­си­маль­но рас­тя­ну­та, а зна­чит, в нашем слу­чае, это по­ло­же­ние, когда груз опу­стил­ся мак­си­маль­но вниз. Таким об­ра­зом, мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны равна

    Из этой фор­му­лы видно, что для вер­ти­каль­но­го пру­жин­но­го ма­ят­ни­ка при не­из­мен­ной ам­пли­ту­де и умень­ше­нии массы груза мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны умень­шит­ся.

    Встречается довольно большое количество различных механизмов, частью которых является пружина. Этот конструктивный элемент характеризуется довольно большим количество различных особенностей, которые должны учитываться. Примером можно назвать понятие потенциальной энергии пружины. Рассмотрим все особенности данного вопроса подробнее.

    Формулы пружинного маятника

    Определение

    Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

    Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

    Формулы периода и частоты колебаний пружинного маятника

    Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

    \[T=2\pi \sqrt{\frac{m}{k}}\left(4\right).\]

    Так как частота колебаний ($u $) — величина обратная к периоду, то:

    \[u =\frac{1}{T}=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\left(5\right).\]

    Формулы амплитуды и начальной фазы пружинного маятника

    Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($\varphi $).

    Амплитуду можно найти как:

    \[A=\sqrt{x2_0+\frac{v2_0}{{\omega }2_0}}\left(6\right),\]

    начальная фаза при этом:

    \[tg\ \varphi =-\frac{v_0}{x_0{\omega }_0}\left(7\right),\]

    где $v_0$ — скорость груза при $t=0\ c$, когда координата груза равна $x_0$.

    Энергия колебаний пружинного маятника

    При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

    Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

    \[E_p=-\frac{dF}{dx}(8)\]

    учитывая, что для пружинного маятника $F=-kx$,

    тогда потенциальная энергия ($E_p$) пружинного маятника равна:

    \[E_p=\frac{kx2}{2}=\frac{m{{\omega }_0}2×2}{2}\left(9\right).\]

    Закон сохранения энергии для пружинного маятника запишем как:

    \[\frac{m{\dot{x}}2}{2}+\frac{m{{\omega }_0}2×2}{2}=const\ \left(10\right),\]

    где $\dot{x}=v$ — скорость движения груза; $E_k=\frac{m{\dot{x}}2}{2}$ — кинетическая энергия маятника.

    Из формулы (10) можно сделать следующие выводы:

    • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
    • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

    Примеры задач с решением

    Пример 1

    Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600\ \frac{Н}{м}$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1\ \frac{м}{с}$?

    Решение. Сделаем рисунок.

    По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:

    \[E_{pmax}=E_{kmax\ }\left(1.1\right),\]

    где $E_{pmax}$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_{kmax\ }$ — кинетическая энергия шарика, в момент прохождения положения равновесия.

    \[E_{kmax\ }=\frac{mv2}{2}\left(1.2\right).\]

    Потенциальная энергия равна:

    \[E_{pmax}=\frac{k{x_0}2}{2}\left(1.3\right).\]

    В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

    \[\frac{mv2}{2}=\frac{k{x_0}2}{2}\left(1.4\right).\]

    Из (1.4) выразим искомую величину:

    \[x_0=v\sqrt{\frac{m}{k}}.\]

    Вычислим начальное (максимальное) смещение груза от положения равновесия:

    \[x_0=1\cdot \sqrt{\frac{0,36}{1600}}=1,5\ \cdot {10}{-3}(м).\]

    Ответ. $x_0=1,5$ мм

    Пример 2

    Задание. Пружинный маятник совершает колебания по закону: $x=A{\cos \left(\omega t\right),\ \ }\ $где $A$ и $\omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_{p0}$.В какой момент времени это произойдет?

    Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

    \[F=-kx=-kA{cos \left(\omega t\right)\left(2.1\right).\ \ }\]

    Потенциальную энергию колебаний груза найдем как:

    \[E_p=\frac{kx2}{2}=\frac{kA2{{\cos }2 \left(\omega t\right)\ }}{2}\left(2.2\right).\]

    В момент времени, который следует найти $F=F_0$; $E_p=E_{p0}$, значит:

    \[\frac{E_{p0}}{F_0}=-\frac{A}{2}{\cos \left(\omega t\right)\ }\to t=\frac{1}{\omega }\ arc{\cos \left(-\frac{2E_{p0}}{AF_0}\right)\ }.\]

    Ответ. $t=\frac{1}{\omega }\ arc{\cos \left(-\frac{2E_{p0}}{AF_0}\right)\ }$

    Читать дальше: формулы равноускоренного прямолинейного движения.

    Источник: https://www.webmath.ru/poleznoe/fizika/fizika_150_formuly_pruzhinnogo_majatnika.php

    Потенциальная энергия пружины и кинетическая – что это, какая формула?

    Во многих механизмах используется потенциальная и кинетическая энергия пружины. Их используют для выполнения различных действий.

    В отдельных узлах они фиксируют детали в определенном положении, не позволяя смещать в какую-либо сторону (барабан револьвера относительно корпуса).

    Другие пружинные системы возвращают исполнительный механизм в исходное положение (курок ручного огнестрельного оружия). Есть устройства, где узлы с гибкими свойствами совершают перемещения в устойчивое положение (механические стабилизаторы).

    Работа связана с изменением геометрических параметров упругого тела. Прилагая нагрузку, заставляют эластичную деталь сжиматься (растягиваться или изгибаться). При этом наблюдается запасание энергии. Возвратное действие сопровождается набором скорости. Попутно возрастает кинетическая энергия.

    Потенциальная энергия пружины

    Рассматривая в качестве накопителя энергии пружину, следует отметить ее отличительные свойства от иных физических тел, которые могут накапливать энергетический потенциал. Традиционно понимается следующее: для накопления потенциала для последующего движения необходимо совершение движения в силовом поле:

    Еп = F ⋅ l, Дж (Н·м),

    где Еп– потенциальная энергия положения, Дж;
    F – сила, действующая на тело, Н;
    l – величина перемещения в силовом поле, м.

    Энергия (работа) измеряются в Джоулях. Величина представляет произведение силы (Н) на величину перемещения (м).

    Если рассматривать условие в поле тяготения, то величина силы находится произведением ускорения свободного падения на массу. Здесь сила веса находится с учетом g:

    Еп = G ⋅ h = m ⋅ g ⋅ h, Дж

    здесь G – вес тела, Н;
    m – масса тела, кг;
    g – ускорение свободного падения. На Земле эта величина составляет g = 9,81 м/с².

    Если расстраивается пружина, то силу F нужно определять, как величину, пропорциональную перемещению:

    F = K ⋅ x, Н,

    где k – модуль упругости, Н/м;
    х – перемещение при сжатии, м.

    Величина сжатия может изменяться по величине, поэтому математики предложили анализировать подобные явления с помощью бесконечно малых величин (dx) .

    При наличии непостоянной силы, зависящей от перемещения, дифференциальное уравнение запишется в виде:

    dEп = k ⋅ x ⋅ dx

    здесь dEп – элементарная работа, Дж;
    dx – элементарное приращение сжатия, Н.

    Интегральное уравнение на конечном перемещении запишется в виде. Ниже вывод формулы:

    Пределами интегрирования является интервал от до х. Деформированная пружина приобретает запас по энергетическим показателям

    Окончательно формула для расчета величины потенциальной энергии сжатия (растягивания или изгиба) пружины запишется формулой:

    Кинетическая энергия

    Движущееся тело характеризуется скалярной величиной (масса) и векторная величина (скорость). Если рассматривать реальное перемещение в пространстве, то можно записать уравнение для определения кинетической энергии:

    здесь v – скорость движения тела, м/с.

    Использование кинетического преобразования можно наблюдать при колке орехов.

    Приподняв камень повыше, далекие предки создавали необходимый потенциал для тяжелого тела.

    Приподняв камень на максимальную высоту, разрешают ему свободно падать.

    Двигаясь с высоты h, он набирает скорость

    Поэтому в конце падения будет получена кинетическая энергия

    Рассматривая входящие величины, можно увидеть, как происходит преобразование величин. В конце получается расчетная формула для определения потенциальной энергии.

    Даже на уровне вывода зависимостей можно наблюдать выполнение закона сохранения энергии твердого тела.

    Использование энергии пружины на практике

    Явление преобразования потенциальной энергии пружины в кинетическую используется при стрельбе из лука.

    Натягивая тетиву, стреле сообщается потенциал для последующего движения. Чем жестче лук, а также ход при натягивании тетивы, тем выше будет запасенная энергия. Распрямляясь дуги этого оружия, придадут метательному снаряду значительную скорость.

    ЭТО ИНТЕРЕСНО:  Как подобрать сверло под дюбель

    В результате стрела полетит в цель. Ее поражающие свойства определятся величиной кинетической энергии (mv²/2).

    Для гашения колебаний, возникающих при движении автомобиля, используют амортизаторы. Основным элементом, воспринимающим вертикальную нагрузку, являются пружины. Они сжимаются, а потом возвращают энергию кузову. В результате заметно снижается ударное воздействие. Дополнительно устанавливается гидроцилиндр, он снижает скорость обратного движения.

    Рассмотренные явления используют при проектировании механизмов и устройств для автоматизации процессов в разных отраслях промышленности.

    закон Гука и энергия упругой деформации.

    Источник: https://metmastanki.ru/energiya-pruzhiny

    Задание №5 ЕГЭ по физике

    В задании №5 ЕГЭ по физике необходимо выбрать верные варианты утверждений, характеризующие то или иное явление. Теория аналогична другим заданиям по механике, но мы напомним основные моменты.

    Колебания

    Колебание – это многократно повторяющийся процесс, характеризующийся изменением значения некоторой физической величины около ее равновесного состояния.

    Пружинный маятник

    В пружинном маятнике сила упругости пропорциональна удлинению пружины F = –kx. Здесь k— коэффициент жесткости пружины, который не зависит от величины силы и смещения.

    Максимальное отклонение от положения равновесия называется амплитудой. Сила упругости при этом отклонении максимальна, потому максимальным является и ускорение тела. При приближении к положению равновесия растяжение пружины уменьшается, что влечет за собой уменьшение ускорения тела, ведь оно зависит от силы упругости. Достигнув точки равновесия, тело не останавливается, хотя в этой точке сила и ускорение равны нулю.

    Скорость тела в точке равновесия пружины имеет наибольшее значение. По инерции тело продолжит движение мимо этого положения, деформируя пружину в противоположную сторону. Сила упругости, которая возникает при этом, тормозит маятник. Она направлена в сторону, противоположную движению маятника. Вновь достигнув амплитуды, тело останавливается, а потом начинает движение в обратную сторону, повторяя все описанное выше.

    Период колебаний

    Период колебаний такого маятника определяется формулой:

    где m – масса тела (груза) на пружине

    Потенциальная энергия

    Потенциальная энергия равна произведению силы на отклонение, то есть

    где х – расстояние от точки, в которой находится груз маятника, до положения его равновесия

    Ускорение тела

    Модуль ускорения на отрезке пути определяется формулой

    где v, v0 – соответственно конечная и начальная скорости тела на указанном промежутке; t, t0 – конечное и начальное время соответственно.

    Импульс тела

    Импульс тела можно вычислить, используя формулу:

    p=mv

    где m – масса тела, v – его скорость

    Сила Архимеда

    Сила Архимеда является силой, с которой жидкость выталкивает тело, погруженное в нее. Она определяется формулой:

    F=ρgV

    где ρ – плотность погруженного физ.тела, g – ускорение своб.падения, V – объем тела.

    Алгоритм решения:

    1. Анализируем таблицу данных движения шарика.

    2–6. Определяем истинность утверждений 1–5.

    7. Записываем ответ.

    Решение:

    1. Максимальное значение потенц.энергии шарик имеет в моменты достижения амплитуды. Из таблицы видно, что наибольшее отклонение от состояния равновесия составляет – по модулю – 15 мм. Поскольку трением и сопротивление воздуха можем пренебречь (т.к. в условии не оговорено обратное), то состояние равновесия (когда пружина не деформирована) находится на одинаковом расстоянии от точек амплитуды, т.е. в нуле.

      Схематически движение такого маятника можно представить как:

    2. В момент t=1,0 c маятник отклоняется на 15 мм, т.е. достигает амплитуды. В таком положении шарик имеет максимальную потенц.энергию. Утверждение 1 верно.
    3. Периодом называют промежуток времени, за которое груз на пружине осуществляет 1 полное колебание.

      Пользуясь нашей схемой, можно утверждать, что полное колебание происходит, когда груз из точки амплитуды справа (15 мм) перемещается в точку амплитуды слева (–15 мм) и обратно. В таблице таким точкам соответствуют моменты времени t1=1 с, t2=3 c. Следовательно, чтобы переместиться между этими точками, требуется время ∆t=t2–t1=3–1=2 c. А чтобы вернуться обратно – еще столько же. Значит, Т=2∆t=2·2=4 c. Утверждение 2 верно.

    4. Смотрим в таблицу: при t= 2,0 с координата шарика равна 0 мм. Он в этот момент пролетает точку равновесия. И скорость его при этом максимальная. А кинетическая энергия равна полупроизведению массы на квадрат скорости. Следовательно, его кинетическая энергия максимальная. Значит, утверждение 3 неверно.
    5. Амплитуда равна 15 мм, поскольку это максимальное отклонение от положения равновесия. Следовательно, утверждение 4 неверно.
    6. Поскольку движение маятника происходит без трения, то выполняется з-н сохранения энергии, т.е. E=const. Поэтому полная механическая энергия не может быть в один момент времени быть большей или меньшей, чем в другой. Утверждение 5 неверно.

    Ответ: 12

     Алгоритм решения:

    1. Анализируем условие задачи. Проверяем правильность первого утверждения.
    2. Определяем силу Архимеда, действующую на бруски. Сравниваем ее с указанным в утверждении 2.
    3. Находим плотность материала и определяем истинность утверждения 3.
    4. Проверяем истинность утверждения 4.
    5. Находим правильный ответ на последний вопрос.
    6. Записываем ответ.

    Потенциальная энергия, ее определение, виды и формулы

    Энергия, говоря простым языком, это возможность что-либо сделать, возможность совершить работу. То есть, если какое-либо тело может совершить какую-либо работу, то про это тело можно сказать, что оно обладает энергией. По сути, энергия — это мера различных форм движения и взаимодействия материи, а её изменение происходит при совершении некоторой работы. Таким образом, совершённая работа всегда равна изменению какой-либо энергии.

    А значит, рассматривая вопрос о совершённой телом работе, мы неизбежно приходим к изменению какого-либо вида энергии. Вспомним также и тот факт, что работа совершается только в том случае, когда тело под действием некоторой силы движется, и при этом сама работа определяется как скалярное произведение вектора этой силы и вектора перемещения, то есть А = F*s*cosa, где а — угол между вектором силы и вектором перемещения.

    Это нам пригодится в дальнейшем для вывода формул различных видов энергии.

    Энергию, связанную с взаимодействием тел, называют ПОТЕНЦИАЛЬНОЙ ЭНЕРГИЕЙ. Иначе говоря, если тело за счёт взаимодействия с другим телом может совершить некоторую работу, то оно будет обладать потенциальной энергией, и при совершении работы будет происходить изменение этой энергии. Обозначают механическую потенциальную энергию чаще всего — Еп.

    Виды потенциальной энергии

    Существуют различные виды потенциальной энергии. К примеру, любое тело на Земле находится в гравитационном взаимодействии с Землёй, а значит обладает потенциальной энергией гравитационного взаимодействия. И ещё пример — витки растянутой или сжатой пружины находятся в упругом взаимодействии друг с другом, а значит сжатая или растянутая пружина будет обладать потенциальной энергией упругого взаимодействия.

    Далее мы рассмотрим только виды механической потенциальной энергии и формулы, по которым их можно рассчитать. Но в дальнейшем вы узнаете и о других видах потенциальной энергии — к примеру, о потенциальной энергии электрического взаимодействия заряженных тел, о потенциальной энергии взаимодействия электрона с атомным ядром.

    Знакомьтесь: наш мир. Физика всего на свете.

    Книга адресована школьникам старших классов, студентам, преподавателям и учителям физики, а также всем тем, кто хочет понять, что происходит в мире вокруг нас, и воспитать в себе научный взгляд на все многообразие явлений природы. Каждый раздел книги представляет собой, по сути, набор физических задач, решая которые читатель укрепит свое понимание физических законов и научится применять их в практически интересных случаях.

    Купить

    Формулы потенциальной энергии

    Перед тем как приступить к выводу формул потенциальной энергии, ещё раз вспомним, что совершённая телом или над телом работа равна изменению его энергии. При этом, если само тело совершает работу, то его энергия уменьшается, а если над телом совершают работу, то его энергия увеличивается.

    К примеру, если спортсмен поднимает штангу, то он сообщает ей потенциальную энергию гравитационного взаимодействия, а если он отпускает штангу и она падает, то потенциальная энергия гравитационного взаимодействия штанги с Землёй уменьшается.

    Также, если вы открываете дверь, растягивая пружину, то вы сообщаете пружине потенциальную энергию упругого взаимодействия, но если потом дверь закрывается, благодаря сжатию пружины в начальное состояние, то и энергия упругой деформации пружины уменьшается до нуля.

    А) Чтобы вывести формулу потенциальной энергии гравитационного взаимодействия, рассмотрим, какую работу совершает тело, двигаясь под действием силы тяжести:

    А = F*s = mg*s = mg*(h1 — h2) = mgh1 — mgh2 = Eп1 — Еп2, то есть, мы получили, что потенциальная энергия гравитационного взаимодействия тела с Землёй может быть вычислена по формуле: Еп = mgh.

    Здесь важно отметить, что поверхность Земли принимается за начало отсчёта высоты, то есть для тела, находящегося на поверхности Земли Еп = 0, для тела, поднятого над Землёй Еп > 0, а для тела, находящегося в яме глубиной h, Еп < 0.

    Отметим также и то, что в формуле работы отсутсвовал cosa. Это не случайно. Ведь если тело движется по сложной траектории, то, какой бы сложной она ни была, её можно разбить на множество вертикальных и горизонтальных участков. Но на горизонтальных участках работа силы тяжести будет равна нулю, так как угол между силой тяжести и перемещением будет прямым, а значит работа будет совершаться только на вертикальных участках траектории, для которых cosa = 1 или cosa = −1.

    Тогда можно сделать ещё один важный вывод — работа силы тяжести не зависит от формы траектории, а только от расположения начальной и конечной точки. А это не случайность — это свойство любых сил, сообщающих телам потенциальную энергию. Такие силы называют потенциальными и сила тяжести — одна из них. К потенциальным силам относится и сила упругости.

    Б) Чтобы вывести формулу потенциальной энергии упругой деформации, рассмотрим, какую работу нужно совершить, чтобы растянуть пружину, изменив её длину на х (х = l — l0):

    А = –Fупр(ср.)*s,

    Во-первых, знак минус в формуле стоит потому, что угол между силой упругости и перемещением свободного конца пружины равен 180 градусов и cosa = −1.

    Во-вторых, возникающая при растяжении пружины сила упругости является переменной силой, в отличие от силы тяжести, поэтому в формуле работы стоит средняя сила упругости. При этом величина силы упругости, в соответствии с законом Гука, прямо пропорциональна изменению длины пружины, а значит её среднее значение можно определить так:

    Fупр(ср.) = (Fупр(нач.) + Fупр(конеч.))/2

    И так как Fупр(нач.) = 0, а Fупр(конеч.) = kх, то:

    А = —kх*s/2

    Но s = x, поэтому: А = —kx2/2 = 0 — kх2/2 = Еп1 — Еп2.

    В итоге, мы получили формулу потенциальной энергии упругой деформации: Еп = kx2/2.

    Методические советы учителям

    1) Обязательно обратите внимание учащихся на связь энергии и работы.

    2) Не давайте учащимся формулы потенциальной энергии без вывода.

    3) Обратите внимание учащихся на то, что оба вида потенциальной энергии зависят от выбора начальной точки, то есть от системы координат.

    4) При выводе формул потенциальной энергии обязательно поясните учащимся почему отсутствует cosa в формуле работы.

    5) Отметьте, что и работа силы тяжести, и работа силы упругости не зависят от формы траектории и, следовательно равны нулю на замкнутой траектории — это общее и важное свойство всех потенциальных сил.

    #ADVERTISING_INSERT#

    Источник: https://rosuchebnik.ru/material/potentsialnaya-energiya/

    Понравилась статья? Поделиться с друзьями:
    Электропривод