Термопласт что это такое

Термопласты и их применение

термопласт что это такое

Термопласт — достаточно широкая группа материалов, особенность которых в превращении при нагревании в особую консистенцию с высокой эластичностью, вязкостью, а при последующем охлаждении в первоначальное агрегатное состояние.

Подобное свойство термпопластов позволяет перерабатывать бывшие в употреблении изделия во вторсырье и использовать для выпуска новой продукции, что благотворно сказывается на их себестоимости и экологической обстановке.

Сегодня наиболее широко используются термопласты из поливинилхлорида, полистирола, полипропилена и полиэтилена высокого или низкого давления.

Разновидности термопластов

В зависимости от температуры термопласт может находиться в нескольких типах фазовых состояний. Единой и точной классификации в зависимости от эксплуатационных параметров и характеристик термопластов не существует, поэтому применяется достаточно условное разделение на следующие группы:

· высокотермостойкий;

· конструкционных (инженерно-технический);

· общего назначения.

Немного в стороне находится группа, так называемых, термопластичных эластомеров. По своим технологическим характеристикам они относятся к обычным термопластам, но наличие значительных обратимых деформаций при эксплуатации в нормальных условиях делает подобный материал по параметрам близким к резине или каучуку.

Применение термопластов

Уникальные свойства термопластов обусловили широкую сферу их применения в различных сферах народного хозяйства. Например, термопластичные материалы достаточно часто используются при выпуске фурнитуры или мебели, проводки, труб, в строительстве, сельскохозяйственной сфере. Нашли термопласты применение и в медицине, так как из них делают материал для проведения протезирования в стоматологии.

Для выпуска готовых изделий кроме вторичного материала, имеющего определенные ограничения в применении, так как регранулят (гранулированное вторичное сырье) или дробленое сырье имеют худшие характеристики, поэтому не может использоваться для производства, например, детских предметов, пищевой упаковки и других изделий. Сегодня на российских предприятиях используются первичные термопласты отечественного и зарубежного производства. Конкретный выбор определяется предъявляемыми требованиями к качеству готовой продукции и их механическим, гигиеническим характеристикам.

Выбор конкретного материала определяется особенностями применения готового изделия. Например, для эксплуатации в пределах от -40 до 0 градусов может использоваться полиэтилен высокого давления.

Если заменить его на поликарбонат, то температурный диапазон применения расширяется, составляя от -100 до +135 градусов, к которым нужно добавить большую прочность, поэтому материал широко используется для остекления автобусных остановок, теплиц, устройства прозрачных конструкций любой степени сложности.

Если важное значение имеет химическая стойкость готового изделия, то оптимальным станет выбор в пользу полиэтилена, из которого выпускаются бесшовные емкости для хранения агрессивных жидкостей (растворы, щелочи, кислоты).

Когда необходима высокая прочность при большом числе циклов изгибания, то рекомендуется применять полипропилен. Материал имеет малую газопроницаемость и паропроницаемость, хорошую твердость и износостойкость (по последнему показателю он близок к полиамиду).

Наличие же неполярной молекулярной структуры у полипропилена делает его химически инертным к кетонам, кислотам, спиртам, эфирам и ряду других химических соединений. Также материал достаточно устойчив к контакту с кипятком, щелочами, водными растворами солей.

Широкое применение нашел термопласт сэвилен, представляющий собой сополимер этилена с винилацетатом. У материала высокая степень прозрачности, сохраняет стабильность во время переработки, устойчив к старению и не токсичен.

Сэвилен сегодня широко используется для выпуска прокладок, шлангов, выдувных изделий, игрушек, что подтверждает его гигиеничность и безопасность для человеческого организма.

Также широко сэвилен используется для изготовления пленок, которые прекрасно пропускают солнечный свет и имеют хорошую стойкость к негативному влиянию атмосферы, поэтому могут применяться в сельском хозяйстве. Хорошие же адгезивные характеристики термопласта привели к широкому применению при изготовлении тары.

Вне зависимости от конкретно выбранного для производства конечной продукции термопласта готовое изделие имеет небольшой вес, низкую себестоимость и хорошие показатели по гибкости.

Источник: http://www.all-upack.ru/termoplasty-material-shirokogo-primenenija/

Как работают термопластавтоматы

термопласт что это такое

Изделия из полимерного сырья широко распространены, благодаря низкой стоимости, высокой технологичности производства, возможности вторичной переработки.

Для многих видов бизнеса будет выгодно организовать производство продукции из пластика собственными силами, а не закупать их на стороне.

В организации линии по производству изделий из термопластов нет ничего сложного – достаточно приобрести термопластавтомат (один или несколько).

Как устроен ТПА

Термопластавтоматы – это инжекционные литьевые машины, в которых сырье из определенного вида пластмасс нагревается, приводится в жидкое агрегатное состояние, потом под давлением подается в пресс-форму.

Внутренние контуры пресс-формы точно повторяют форму будущего изделия, поэтому полная заливка оснастки полимером означает получение геометрически точных деталей.

Все узлы и агрегаты машины крепятся на стальной раме, от её прочности и жесткости во многом зависит качество получаемой продукции.

Если производитель термопластавтомата экономил сталь, то возникающее напряжение при смыкании пресс-формы гарантированно приведет к перекосу оснастки и появлению брака.

Основные узлы инжекционно-литьевой машины

  • Материальный цилиндр и шнек – здесь находится расплавленный полимер, с помощью шнека точно выверенный объем сырья впрыскивается в ПФ;
  • Бункер – в нем хранится достаточный объем сырья, для обеспечения непрерывной работы оборудования;
  • Масляный бак, гидравлические цилиндры и двигатели, система шлангов – создают необходимое давление в гидравлической системе ТПА, обеспечивая движение основных механизмов машины.
  • Узел запирания – состоит из мобильных и неподвижных плит, коленно-рычажного механизма (для горизонтальных моделей);
  • Узел выталкивания позволяет автоматически извлекать готовые изделия из пресс-формы;
  • Управляющая электроника – позволяет точно контролировать процесс литья, устанавливая все технологические параметры.

Гранулы полимерного сырья нагреваются одновременно за счет нагревательных элементов, установленных на материальном цилиндре, так и за счет тепла, выделяющегося при трении гранул пластика при вращении шнека.

Используемая технологическая оснастка

Качество получаемых на ТПА изделий критически зависит от используемой пресс-формы. Жесткость оснастки и шероховатость внутренней поверхности напрямую влияют на риск появления дефектов на поверхности получаемых отливок. Также важен химический состав используемого для производства ПФ сплава – использование дешевых сплавов стали или алюминия приводят к сокращению её жизненного цикла, увеличивая расходы на подготовку производства.

В зависимости от характеристик используемого сырья, геометрической формы отливаемых деталей, используются либо холодноканальные, либо горячеканальные ПФ. В ряде случаев важно подогревать литниковую систему, поддерживая пластик в жидком состоянии. Это уменьшает процент отходов, обеспечивает лучшую проливаемость пресс-формы.

Режимы работы инжекционного литьевого оборудования

Для собственника предприятия наиболее выгодна автоматическая работа, когда всеми процессами управляет электроника. Но на рынке представлены и модели с ручным управлением, когда оператор запускает каждый цикл вручную, по окончании удаляя каждый готовый экземпляр изделия из оснастки.

Время цикла в процессе литья варьируется в широких пределах – тонкостенные изделия могут изготавливаться за несколько секунд, отливки весом в сотни килограмм могут производиться минутами. Один из самых сложных и трудоемких процессов – это настройка цикла, для него требуется опытный технолог, понимающий физические процессы, возникающие в ПФ, знающий особенности используемого термопласта.

Важность правильного выбора комплектующих для термопластавтомата

Если инжекционно-литьевая машина эксплуатируется в режиме полной загрузки – невозможно полностью исключить износ узлов и механизмов, поэтому для активно работающих предприятий периодически возникает вопрос замены расходников. Это позволяет экономить время от простоев, ведь качественные детали работают дольше и требуют меньше сервиса. Можно пойти по пути наименьших финансовых трат и заказать совместимые запчасти от noname производителей, но их ресурс и качество непредсказуемы.

Разумное решение – приобретать запасные части от производителей с положительной репутацией, подтвержденной гарантийными обязательствами российского сервисного или дилерского центра.

В особо тяжелых случаях, дешевые комплектующие не обеспечивают требуемую точность термопластавтомата, производя брак. Качественные комплектующие обеспечивают максимальную эффективность работы, уменьшение времени на изготовление единицы изделия и, как следствие, максимизацию прибыли предприятия. Поэтому при выборе станка важно обратить внимание на известность завода-производителя каждой комплектующей. В Германии, Франции, Италии, Корее и Японии надежных заводов, разумеется, больше.

Оставьте заявку для консультации с менеджером

Источник: https://Toplast.ru/publikaczii/kak-rabotayut-termoplastavtomatyi

Термоэластопласт (ТЭП) — материал, его свойства и применение

термопласт что это такое

Термоэластопласт (ТЭП, англ. TPE) или термопластичный каучук — полимерная смесь или соединение, которое при температуре плавления проявляет термопластичный характер, который позволяет его формовать в готовое изделие и которое  в пределах его расчетного температурного диапазона обладает характеристиками эластомеров без сшивания в процессе изготовления. Этот процесс является обратимым, и изделия из TPE можно перерабатывать и переделывать.

История термопластичных эластомеров/каучуков (TPR / TPE)

Первый термопластичный эластомер стал доступен в 1959 году, и с тех пор появилось множество новых вариантов таких материалов. Существует шесть основных групп TPE, которые доступны коммерчески: стирольные блок-сополимеры (TPE-S), полиолефиновые смеси (TPE-O), эластомерные сплавы, термопластичные полиуретаны (TPE-U), термопластичные сополиэфиры (TPE-E) и термопластичные полиамиды (TPE-A).

Cвойства ТЭП

Несмотря на то, что ТЭП является термопластичным, он обладает эластичностью, аналогичной эластичности сшитого каучука. Ключевым индикатором является их мягкость или твердость, измеренная по шкале дюрометра Шора. Подобно сшитому каучуку, ТЭП доступны в виде очень мягких гелевых материалов от 20 Shore OO до 90 Shore A, после чего они входят в шкалу Shore D и могут быть произведены с целью получения значения твердости до 85 Shore D, которая обозначает очень твердый материал.

Конструкторы все чаще используют ТЭП из-за значительной экономии затрат, потому что их можно обрабатывать на оборудовании для переработки пластмасс. Обычный каучук, как натуральный, так и синтетический, представляет собой термореактивный материал, который должен подвергаться химической реакции сшивания во время формования или экструзии, обычно называемой вулканизацией.

Благодаря этому процессу ТЭП обычно не обрабатывается в стандартном оборудовании для термопластов. Время, необходимое для завершения реакции вулканизации, зависит от многих факторов, однако в основном, это где-то между 1 минутой и несколькими часами.

С другой стороны, термопластичные формовочные и экструзионные процессы, используемые для ТЭП, избегают стадии поперечной сшивки и могут достигать очень быстрых циклов, которые могут составлять всего 20 секунд. Для защиты окружающей среды затраты на издержки требуют, чтобы все больше и больше материалов подлежало переработке.

Отходы от обработки ТЭП, отбракованные детали или продукты конечного использования можно легко перерабатывать, тогда как большинство термореактивных эластомеров заканчивают свою жизнь на полигоне.

Дополнительные преимущества по сравнению с термореактивной резиной, обеспечиваемые ТЭП, включают отличную цветоустойчивость и меньшую плотность.

Вот почему ТЭП являются одними из самых быстрорастущих сегментов пластмасс:

  • ТЭП — уникальный класс технических материалов, сочетающий внешний вид, упругость и эластичность обычной термореактивной резины и эффективность обработки пластмасс.
  • Перерабатываемость расплавленного ТЭП делает его очень подходящим для литья под давлением и экструзии с большими объемами. Его можно также утилизировать и перерабатывать.
  • Как эластомеры, ТЭП обладает высокой эластичностью.

Основные показатели

  • Отличная износостойкость при изгибе
  • Хорошие электрические свойства
  • орошая стойкость к разрыву и истиранию.
  • Устойчивость к низким и высоким температурам от -30 до + 140 ° С
  • Высокая стойкость к ударам
  • Низкий удельный вес
  • Отличная стойкость к химикатам и атмосферному воздействию
  • Совместная инъекция и совместная экструзия с полиолефинами и некоторыми инженерными пластмассами
  • Возможность окраски в любой цвет

Виды ТЭП (TPE)

Существует шесть основных групп ТЭП (TPE), доступных в продаже, и они перечислены в приблизительно возрастающем ценовом порядке:

  1. Стирольные блок-сополимеры (SBS,TPE-S) основаны на двухфазных блок-сополимерах с твердыми и мягкими сегментами. Блоки стирольных концов обеспечивают термопластичные свойства, а бутадиеновые средние блоки обеспечивают эластомерные свойства. SBS, вероятно, имеет самый большой объем производства, и обычно используется в обуви, адгезивах, модификации битума, уплотнениях и рукоятках с более низкой спецификацией, где устойчивость к химическим веществам и старение имеют низкий приоритет. SBS при гидрировании превращается в SEBS, так как устранение связей C = C в бутадиеновом компоненте приводит к получению промежуточного блока этилена и бутилена, поэтому используется аббревиатура SEBS. SEBS характеризуется значительно улучшенной термостойкостью, механическими свойствами и химической стойкостью.
  2. Термопластичные полиолефины (TPE-O или TPO). Эти материалы представляют собой смеси полипропилена (PP) и несшитого EPDM-каучука, в некоторых случаях присутствует низкая степень поперечной сшивки для повышения свойств терморезистентности и сжатия. Они используются в применениях, где требуется повышенная ударная вязкость по сравнению со стандартными сополимерами полипропилена, например, в автомобильных бамперах и приборных панелях. Свойства ограничены верхним пределом шкалы твердости, обычно 80 Shore A, и ограниченными эластомерными свойствами.
  3. Термопластические вулканизаты (TPE-V или TPV)

Источник: https://kauchuk.com.ua/tpe-material/

Термопластичные полимеры в строительстве

В современном строительстве термопластичные полимеры находят самое широкое применение благодаря сочетанию прочности, долговечности и универсальности. В отличие от термореактивной пластмассы, термопласты могут размягчаться при нагревании, а затем отвердевать и восстанавливать исходные свойства при остывании. Эта особенность позволила стать таким материалам, как полиэтилен, ПВХ и полипропилен одними из ключевых в строительстве.

Основные свойства термопластичных полимеров

Среди ключевых свойств, благодаря которым данные полимеры нашли широкое применение в строительстве, можно выделить:

  • Разнообразие форм изделий. За счет различных методов переработки расплава (экструзия, литье, формовка) обеспечивается возможность изготовления приспособлений и строительных материалов практически любых форм и конфигураций.
  • Прочность и долговечность. Полимеры отличаются хорошей устойчивостью ко всем внешним факторам воздействия, долго сохраняют свои механические и физико-химические свойства.
  • Устойчивость к воздействию влаги, а также многих агрессивных сред. Материалы могут применяться в непрерывном контакте с водой без риска их деформаций или повреждения.
  • Хорошие изоляционные свойства. Материалы данного семейства обладают отличными барьерными свойствами и долго сохраняют их.
  • Малый вес. По сравнению с традиционными строительными материалами (дерево, металл, камень) данные вещества имеют намного меньший вес, и значительно более выгодное соотношение веса и прочности.
ЭТО ИНТЕРЕСНО:  Что такое каучук в химии

Области применения термопластичных полимеров в строительстве

Применение полимеров в строительстве можно условно охарактеризовать следующими векторами:

  • Инженерные сети. Полимеры трубных марок широко применяют для изготовления коммуникаций под водоснабжение, канализацию, отопление.
  • Непосредственно строительные материалы. Термопласты применяются для изготовления декоративных изделий, а также блоков и плит, используемых непосредственно в конструкциях. Наиболее распространенный вариант применения – оконные рамы из ПВХ, которые де-факто стали промышленным стандартом остекления в РФ, доминируя на рынке.
  • Изоляция. Термопласты широко применяются для изоляции тепла, звука, электроэнергии, пара, воды. Особенно эффективны вспененные термопласты, которые за счет внедрения в структуру материала пор обеспечивают улучшенные барьерные свойства.
  • Крепежные изделия. Пластиковые дюбеля – наиболее распространенное в современных условиях крепежное решение. За счет простой и прочной конструкции они надежно закрепляются в различных материалах и позволяют надежно произвести монтаж.
  • Вспомогательные функции при организации строительного процесса. К примеру, термопласты широко применяются для изготовления пленок, используемых в ходе строительных работ, а также для изготовления мелких вспомогательных изделий и приспособлений.

Сфера применения термопластов непрерывно расширяется, так как производители строительных материалов и сопутствующих товаров постоянно внедряют различные новинки.

Источник: https://unitreid-group.com/poleznoe/termoplastichnye-polimery-v-stroitelstve/

Simplex Полимеры Нижнего Новгорода

Подробности Создано: 11.01.2017 18:43

В статье приводится классификация термопластичных полимеров, описываются их особенности, физические характеристики и сфера применения.

Термопласты

Термопласты – большая группа полимеров, которые обладают свойством переходить из твердого состояния в высокоэластичное или вязкотягучее при нагревании и восстанавливать свое первоначальное состояние при охлаждении.

Этот процесс может проходить многократно в одну и другую сторону, что позволяет перерабатывать термопластовые отходы в новую продукцию. При этом существенно снижается себестоимость изделия и улучшается экологическая обстановка.

Переработка ТПЕ полимеров происходит при помощи прессования, литья под давлением и выдувного формования. Переработке подлежит только высушенный материал, процент влаги в котором составляет не более 0,1.

Классификация термопластов

Классификация термопластов производится по нескольким критериям. По своему физическому состоянию они делятся на аморфные и кристаллизующиеся.

Первые, в зависимости от температуры воздействия, могут находиться в трех состояниях (в порядке ее повышения): стеклообразном, высокоэластичном и вязкотягучем.

Первому свойственны небольшие упругие деформации, второе состояние характеризуется возможностью больших обратимых деформаций, дальнейшее повышение температуры приводит к тому, что в термопласте появляются уже необратимые изменения.

В зависимости от химической структуры термопласты можно разделить на полиолефины (полиэтилен, полипропилен), сложные полиэфиры, полиамиды, стирольные пластики, полимеры (акриловые и на основе целлюлозы и фторопластов).

По эксплуатационным характеристикам различают термопласты общетехнического, инженерно-технического назначения и термостойкие.

Для улучшения технологических и эксплуатационных характеристик термопластов могут применяться наполнители. По их виду полимеры разделяют на стеклопластик (наполнитель из стекла), углепластик (углеродное волокно) и специальные термопласты (с электропроводящими материалами, антифрикционными и увеличивающими износостойкость добавками и т. д.).

Все эти полимеры обладают целым рядом очень полезных и уникальных свойств, которые позволяют широко их использовать в самых разнообразных областях. Они имеют хорошую термостойкость, упругость, мягкость, практически не токсичны, очень эластичны даже при низких температурах, устойчивы к химическим воздействиям. Кроме того, они очень технологичны и служат долго.

Термопластичные полимеры часто применяются при производстве труб, электропроводки, фурнитуры для мебели. Используют их в сельском хозяйстве и при строительных работах. Свое место термопласты заняли также и в медицине (стоматология, протезирование).

Без термопластичных материалов сегодня не обходится и обувная промышленность (из них производятся высококачественные подошвы), и машиностроение (изготавливаются различные шестерни, муфты, подшипники, амортизаторы и т. д.), и производство спортивного инвентаря.

Поскольку у вторичных термопластов характеристики все-таки немного похуже, то для производства продуктов, к которым предъявляют повышенные требования к качеству, гигиеническим характеристикам (например, вещи для детей, упаковки для продуктов) в настоящее время используют только первичные материалы. 

Конкретный термопластичный полимер выбирается, исходя из условий и особенностей применения готовой продукции. К примеру, у поликарбоната очень хорошая прочность, и он может эксплуатироваться в очень широком диапазоне температур (примерно от — 100 до + 140 °С), поэтому его используют при остеклении различных прозрачных сооружений (теплицы, остановки общественного транспорта и т. д.).

Полиэтилен

Полиэтилен чаще всего используется там, где необходима высокая стойкость к химическим воздействиям, поэтому из него производят тару для хранения и транспортировки химически агрессивных жидких веществ (кислота, щелочь и т. д.).

Когда необходима высокая прочность конструкции с большим количеством изгибов и поворотов, то используется полипропилен.

Помимо прочности, этот материал характеризуется высокой износостойкостью, инертностью к различным химическим соединениям (например, к спиртам и кислотам), он не пропускает газ и пар.

Сэвилен

Для производства разнообразных прокладок, шлангов, пленок, надувных игрушек широко используется сэвилен. Применение сэвилена в данной области обусловлено его прозрачностью, гигиеничностью и безопасностью для организма человека, хорошими адгезивными характеристиками, сохранением исходных свойств в процессе переработки.

Какой бы термопластичный материал ни применялся в производстве, изделие из него всегда обладает низкой стоимостью, небольшим весом и хорошей эластичностью. 

Источник: https://www.simplexnn.ru/newspolymer2/10546-tpe

Термопластичные и термореактивные полимеры

Реакция полимерного материала на механическое воздействие при высокой температуре определяется его строением. Исходя из этого, все полимеры подразделяются на термопластичные (термопласты) и сетчатые термореактивные (реактопласты). Описываемый принцип классификации полимеров основан на изменении их поведения в зависимости температуры.

Свойства термопластов

При повышении температуры термопластичные полимеры стремятся к переходу в жидкое состояние, а при охлаждении затвердевают. Процесс размягчения/затвердевания обратим и может повторяться многократно.

Изготовление изделий из термопластичных полимеров (ПЭТ, полистирола, полиэтилентерефталата и ПВХ) происходит при параллельном воздействии высоких температур и давления.

Материалы, принадлежащие к классу термопластов, сравнительно мягкие. К ним относится большинство линейных полимеров гибкоцепного типа и полимеров с небольшим количеством боковых ветвей.

Особенности реактопластов

Термореактивные полимеры имеют сетчатую структуру. Они затвердевают непосредственно в процессе их изготовления. Процесс затвердевания реактопластов необратим. Они остаются в твердом состоянии, несмотря на повторное нагревание.

Структура сетчатых полимеров образована ковалентными связями между соседними цепями молекул. Эти связи не разрушаются при нагревании, поскольку не допускают вибрационного или ротационного движения молекул. Это позволяет материалу оставаться твердым при повышении температуры.

Поперечные молекулярные сшивки также довольно плотные.

·         До половины повторяющихся единиц молекулярной цепи реактопластов связаны между собой поперечными связями.

·         Разрушение этих связей возможно лишь путем нагревания до экстремально высоких температур.

·         Подавляющее большинство реактопластов превосходит термопласты по жесткости и прочности, материалы лучше сохраняют приданные им формы.

К классу реактопластов относится большинство полимеров сшитого и сетчатого типов, в том числе и вулканизованные каучуки, эпоксидные и фенолсодержащие смолы, а также полиэфирные соединения.

Источник: https://www.jonwai.ru/articles/termoplastichnye-i-termoreaktivnye-polimery/

РЕАКТОПЛАСТЫ

Одним из основополагающих разделений пластмасс на типы является их деление на реактопласты и термопласты. Если термопласты являются многократно перерабатываемыми полимерами, которые легко плавятся при повышении температуры, принимают заданную форму, застывают, а потом могут быть вновь расплавлены, то реактопласты – полимеры другой природы.

Реактопласты (термореактивные полимеры или термореактопласты), обладают особыми свойствами при нагреве подобно термопластам могут переходить в вязкотекучее состояние (плавиться). Но они не способны переходить из одного фазового состояния в другое многократно.

При нагревании в массе термореактивного полимера происходят химические взаимодействия между макромолекулами, которые приводят к образованию трехмерной жесткой структуры сшитого полимера.

Такие реакции являются необратимыми, сшитые термореактивные полимеры при дальнейшем повышении температуры могут разрушиться (деструктировать по одному из механизмов), но неспособны к плавлению.

Типичные представители

Если среди термопластичных полимеров можно встретить такие известные материалы, как полиэтилен, полипропилен, ПВХ, полистирол, ПЭТ и так далее, то реактопласты сейчас менее известны. Этот факт особенно любопытен ввиду того, что в середине 20 века термореактивные полимеры применялись более широко, чем термопластичные пластики.

Даже в 1980-е и 1990-е годы на кафедрах переработки пластмасс большее время уделяли композициям на основе отверждаемых смол, их модификациям и получению изделий из них.

Этот факт обусловлен тем, что, хотя важнейшие термопласты были получены очень давно (многим уже более 100 лет), но марок с ценными, прежде всего прочностными качествами долгое время не существовало.

Самыми широко используемыми в современной промышленности являются реактопласты на основе полиэфирных, фенолформальдегидные, эпоксидных, аминоальдегидных и карбамидных смол.

Рис.1. Эпоксидные клеи – одно из главных применений термореактивных смол

Композиции реактопластов в общем виде состоят из связующего и наполнителей. Связующее представляет собой непосредственно термореактивный полимер (смолу), примером таких полимеров являются фенол-формальдегидную, мочевино-формальдегидную и меламино-формальдегидную, эпоксидную, полиэфирную и т.д.

Наполнители для термореактивных полимеров применяются в целом те же, что и для термопластов: мел, тальк, древесная мука, стекловолокно, однако более часто применяются тканые и волокнистые материалы, такие как хлопчатобумажная и другие ткани, целлюлоза, длинные волокна из различных материалов.

 

Свойства реактопластов

Термореактопласты довольно сильно отличаются по характеристикам друг от друга. Несмотря на некоторые общие особенности, это всё-таки разные по своей химической природе полимеры.

Свойства самих термореактивных полимеров и изделий из них зависит от химического состава и структуры полимерных цепей, количеством связей между молекулами и их видом, соотношения полимер-отвердитель и типом последнего. Характеристики каждого реактопласта могут регулироваться в широких пределах.

Для этого применяют помимо отвердителя такие аддитивы, как загустители, разбавители, лубриканты, эластификаторы и пластификаторы.

Отличие термореактивных полимеров от термопластичных заключается в возможности первых успешно применяться при высоких для пластмасс значениях температуры, вплоть до 130 градусов С. Также они имеют высокую химическую стойкость. Они устойчивы к действию органических растворителей, растворам кислот и оснований и многих других химикатов.

Переработка в изделия

Получение изделий из реактопластов главным образом проводится методами литьевого или прямого прессования. Более современным является метод литья под давлением, который отличается от традиционного литья термопластов наличием не охлаждаемой, а обогреваемой литьевой формы, работающей в диапазоне 160-210 градусов С.

При всех этих методах в полимере проходит химическая реакция сшивки макромолекул, называемая отверждением. Для полного химического отверждающего взаимодействия молекул обычно необходимо затратить минуты или даже часы.

Технологический процесс осложняется риском раннего отверждения термореактивной смолы, поэтому температурный режим прессования и особенно литья необходимо поддерживать точно.

Кроме того нужно точное дозирование полимерной смеси и ее быстрый впрыск в прессформу ввиду очень короткого времени возможного нахождения реактопластов в вязкотекучем (расплавленном) состоянии.

Изделия из термореактивных полимеров после формования подходят для постобработки механическими методами, а также для соединений с другими изделиями или материалами при помощи клеев. В случае низкой степени сшивки возможно также свариванием таких изделий химическим способом.

Фенопласты

Термореактивные полимеры на основе фенолоформальдегидных смол называются фенопласты. Несколько десятилетий назад это был один из самых популярных типов полимеров из всех. Сегодня фенопласты используются в узких отраслях, там, где не нашлось еще термопласта-заменителя, либо подходящий термопласт очень дорог.

Фенопласты классифицируют по виду смолы на резольные и новолачные, а по свойствам наполнителей на армированные (природными волокнами, стеклотканью, синтетическими волокнами, углеволокном, ткаными материалами, бумагой и т.п.) и дисперсно-наполненные (древесной или минеральной мукой, асбестом, коксом, углеродным порошком, каолином, стеклянным волокном, металлической пудрой и т.д.).

Фенопласты являются типичными термореактивными пластмассами, они имеют высокие физико-механические свойства устойчивость, прочность, коррозионностойкость, отличную электроизоляционность. Электротехника остается главной отраслью применения фенопластов, кроме того, они используются в качестве конструкционных, антифрикционных материалов и в других сферах.

Рис.2. Типичное применение фенопластов в электротехнике

Если дисперсно-наполненные фенопласты перерабатывают в изделия традиционными методами, такими как прессование, то армированные материалы имеют свои особенности. Их изготавливают главным образом по технологии пропитки волокнистых наполнителей полимерным связующим.

Непосредственно изделия из армированных реактопластов получают при помощи намотки, выкладки и протяжки с последующей фиксацией формы изделия при помощи отверждения смолы. Очень часто фенопласты выпускают в виде полуфабрикатов – листов, прутков, пластин и т.п.

для последующей механической обработки в конечные изделия.

Армированные фенолформальдегидные пластмассы производятся под известными всем именами текстолит, волокнит, стеклотекстолит и другими.

Изделия из них используют в ответственных высоконагруженных узлах, работающих, например, в условиях сильных вибраций, ударных нагрузок, нагрузках на разрыв и изгиб и т.д.

Они имеют широкое применение как заместители высоковольтных стеклянных и керамических изоляторов, в изготовлении корпусов приборов и другой техники, в передаточных механизмах, например редукторах и т.д.

Вторичное использование

Переработка использованных реактопластовых изделий затруднена по той же причине, по которой они отличаются от остальных полимеров – трехмерной сетчатой структуры полимера и невозможности его расплавить.

Пути рециклинга таких пластмасс заключаются либо в их измельчении и применении в виде наполнителя, либо в попытках деполимеризации с извлечением низкомолекулярных продуктов. Во втором, более продвинутом пути, достигнуты некоторые успехи, однако такие технологии очень энергозатратны. В данном аспекте термопласты имеют неоспоримое преимущество.

ЭТО ИНТЕРЕСНО:  Как закалить сталь 45

Объявления о покупке и продаже оборудования можно посмотреть на         

Доске объявлений ПластЭксперт

Обсудить достоинства марок полимеров и их свойства можно на               

Форуме о полимерах ПластЭксперт

Зарегистрировать свою компанию в Каталоге предприятий

Вернуться к списку терминов

A Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Я

Источник: https://e-plastic.ru/slovar/r/reaktoplactu/

Термопласт и Дюропласт — это одно и тоже или есть отличия

Маленькому ребенку на взрослом сидении неудобно – он будет просто-напросто проваливаться в слишком крупную дырку. Поэтому производители выпускают специальные модели для детей. Они надеваются сверху стандартного сидения.

Накладные детские варианты могут отличаться веселыми расцветками и оригинальной формой. Например, их иногда выполняют в виде героев мультфильмов или сказок, снабжают яркими картинками. Впереди зачастую делают удобный выступ, чтобы малыш держался и не падал.

Пример – накладная модель «Baby Care JBD-Rim», выполненная в виде хорошенькой уточки. Материал – качественный пластик, а края, клюв и ножки утенка сделаны из мягкой резины. Цена – 610 рублей.

Детское сиденье для унитаза

Мягкое и жесткое

  • Самые первые экземпляры были выполнены из дерева или фанеры – впрочем, они и сейчас присутствуют, в основном в общественных уборных. Такие сидения жесткие и не слишком комфортные – долго не посидишь.
  • Потом появился пластик – большинство китайских недорогих моделей выполнены именно из разновидностей этого материала. Он, конечно, комфортнее, чем твердая деревянная поверхность, но тоже жесткий. Особенно неудачно, если пластик оказывается хрупким. Он тогда долго не протянет в готовом изделии. Стоит помнить, что пластик пластику рознь. Например, полипропилен очень даже надежный и стойкий к нагрузкам.
  • Одним из самых современных материалов для изготовления сиденья для унитаза является дюропласт. Это вещество (к слову, тоже вид пластика) делают из синтетических смол с добавлением волокон хлопка или шерсти. Материал получается очень плотный и долговечный. Такая крышка не отломается и не треснет, даже если будет в общественных местах использоваться. К тому же в составе материала (похожего скорее на керамику, чем на пластик) зачастую имеются антибактериальные вещества. Именитые бренды большинство изделий выпускают именно из дюропласта.
  • Мягкие сиденья для унитаза могут быть выполнены из ткани (что удобно, но не слишком практично). Бюджетные варианты: деревянный каркас, слой поролона и клеенчатый верх. Служат такие изделия не слишком долго, да и в уходе неудобны. Еще выпускают полужесткие модели – из пластика или металла с верхним прорезиненным покрытием.

Современное сиденье для унитаза из дюропласта

С дополнительными опциями

Современные изделия отличают удобные функции. Которые, впрочем, существенно повышают их стоимость.

Следующий видеообзор расскажет вам более подробно о сиденьях для унитаза с микролифтом:

Универсальное изделие

Такое сиденье для унитаза как универсальное еще называют семейным, так как оно подходит и для больших, и для маленьких. Кроме того, в отличие от накладного, оно держится надежно, не елозит и не скользит.

Пример – белоснежная модель «СемьЯ» от известного европейского бренда «Wirquin». Материал – крепкий полипропилен, гарантия – два года. Иногда конструкция предполагает вариант, что маленькое верхнее сидение потом снимается (когда ребенок подрастет и не будет в нем нуждаться).

О том, где купить взрослые и детские модели сиденья для унитаза, вы узнаете из следующего раздела.

Универсальное сиденье для унитаза

Как выбрать сиденье для унитаза

Так как унитазы, выпускаемые различными компаниями, могут иметь множество вариантов конфигурации (как по форме, так и по размерам чаши), то и верхние крышки с вырезанным отверстием тоже обладают соответствующими габаритами. И если они нестандартные, то эти изделия надо брать сразу в комплекте с сантехникой.

Выбирая конкретную модель сиденья, стоит отталкиваться от трех параметров:

  • расстояние от одного до другого отверстия, предназначенных для его крепления;
  • расстояние от крепежной оси до края крышки с внутренней стороны;
  • расстояние от крепежной оси до самого конца сиденья.

Но размеры сиденья для унитазов – это еще не всё. Также следует добиваться совпадения формы – ведь чаша бывает овальной, удлиненной, закругленной, прямоугольной. Некрасиво и неудобно, если сиденье будет слишком нависать над ней или не закрывать некоторую ее часть. Впрочем, большая часть изготовителей всё же поддерживается определенного стандарта – они создают закругленные изделия с более-менее одинаковыми габаритами.

А вот если унитаз приобретается особенный (дизайнерский), найти к нему крышку сложнее всего

В этом случае обращаем первоочередное внимание на расстояние между дырочками для крепления. А в остальном ориентируемся на форму

Кстати, можно обвести унитаз на бумаге, а потом с этим листочком идти выбирать.

И еще: как и при покупке других товарах, здесь не стоит гнаться за самыми дешевыми вариантами. Ведь это, как правило, «Китай», причем самый низкокачественный, сделанный из хрупкого пластика. Такое сиденье быстро расколется, так что придется покупать новое. Поэтому лучше взять модель европейского или известного отечественного бренда. Последние, к слову, обойдутся дешевле.

Приобретая крышку, обратите внимание и на качество ее креплений. Пластик дешевле, но может сломаться

Лучше, если это будут металлические петли. А еще внизу непременно должны иметься амортизаторы – например, из резины. Тогда сиденье не будет громко и раздражающе стучать. Да и прослужит дольше, как и сам унитаз.

Выбрав сиденье для унитаза, стоит озаботиться и тем, чтобы установить его. В этом вам поможет следующее видео:

Ответы знатоков

Raptor SD:

Ничем, лучше новый купить.

KOT:

лучше купи новый

Сергей:

Лучше, конечно, новый бы приобрести, но могу посоветовать холодную сварку «Поксипол» ( Poxipol ).

kot:

эпоксидка провереней и надёжней: склееной ей служило под тридцать лет на улице. И недаром ей лодки, автомобили и самолёты клеют.

BLIZNEC:

Ситуации бывают разные. Эпоксидка —ОДНОЗНАЧН.

janna:

Проще купить новый и забыть о проблеме.

Юрий:

А они разве дефицит? Почему бы новый не купить )))

Truculentus:

Синтетический клей, предназначенный для склеивания фаянса и керамики: БФ-2, ЭДП, МЦ-1, ЭПО, «Мекол» , «Рапид» , «Аго» , «Марс» , «Эластостил-2», «Суперцемент» , «Уникум» , «Момент», «Grokim».

Aleks:

Уважаемый! Купите себе новый! Но если уж приспичило) ) клейте на строительный Момент водостойкий или универсальный, и промажьте потом со стороны воды герметиком.

Источник: https://mr-build.ru/newsanteh/cem-kleit-duroplast.html

Виды и свойства пластмасс. Определение типа пластика

В современных автомобилях доля пластмассовых деталей постоянно растет. Растет и количество ремонтов на пластмассовых поверхностях, все чаще мы сталкиваемся с необходимостью их окрашивания.

Во многом окраска пластмасс отличается от окраски металлических поверхностей, что обусловлено, в первую очередь, самими свойствами пластмасс: они более эластичны и имеют меньшую адгезию к ЛКМ.

А так как спектр полимерных материалов, применяемых в автомобилестроении, очень разнообразен, то не будь каких-то универсальных ремонтных материалов, способных создавать качественное декоративное покрытие на многих из их типов, малярам бы, наверное, пришлось получать специальное образование по химии.

К счастью, все на самом деле окажется значительно проще и погружаться с головой в изучение молекулярной химии полимеров нам не придется. Но все же некоторые сведения о типах пластмасс и их свойствах, хотя бы с целью расширения кругозора, будут явно нелишними.

Пластмассы — в массы

В XX веке человечество пережило синтетическую революцию, в его жизнь вошли новые материалы — пластмассы. Пластмассу можно смело считать одним из главных открытий человечества, без ее изобретения многие другие открытия были бы получены намного позже или их не было бы вовсе.

Александр Паркс. Изобретатель первой пластмассы

Первая пластмасса была изобретена в 1855 году британским металлургом и изобретателем Александром Парксом. Когда он решил найти дешевый заменитель дорогостоящей слоновой кости, из которой в то время делались бильярдные шары, вряд ли он мог себе представить, какое значение впоследствии приобретет полученный им продукт.

Ингредиентами будущего открытия стала нитроцеллюлоза, камфора и спирт. Смесь этих компонентов прогревалась до текучего состояния, а затем заливалась в форму и застывала при нормальной температуре. Так на свет появился паркезин — прародитель современных пластических масс.

От природных и химически модифицированных природных материалов к полностью синтетическим молекулам развитие пластмасс пришло несколько позже — когда профессор Фрейбургского университета немец Герман Штаудингер открыл макромолекулу — тот «кирпичик», из которого строятся все синтетические (да и природные) органические материалы. Это открытие принесло в 1953 году 72-летнему профессору Нобелевскую премию.

С тех-то пор все и началось Чуть ли не ежегодно из химических лабораторий шли сообщения об очередном синтетическом материале с новыми, невиданными свойствами, и сегодня в мире ежегодно производятся миллионы тонн всевозможных пластических масс, без которых жизнь современного человека абсолютно немыслима.

Пластмассы используются везде, где только можно: в обеспечении комфортной жизнедеятельности людей, сельском хозяйстве, во всех областях промышленности. Не исключением является и автомобилестроение, где пластик используется все шире, неудержимо вытесняя своего основного конкурента — металл.

По сравнению с металлами пластмассы — очень молодые материалы. Их история не насчитывает и 200 лет, в то время как олово, свинец и железо были были знакомы человечеству еще в глубокой древности — за 3000-4000 лет до н. э. Но несмотря на это, полимерные материалы по ряду показателей значительно превосходят своего основного технологического конкурента.

Преимущества пластмасс

Преимущества пластмасс по сравнению с металлами очевидны.

Во-первых, пластик существенно легче. Это позволяет снизить общий вес автомобиля и сопротивление воздуха при движении, и тем самым — уменьшить расход топлива и, как следствие, выброс выхлопных газов.

Во-вторых, использование пластмасс дает почти неограниченные возможности для формообразования, позволяя воплощать в реальность любые дизайнерские идеи и получать детали самых сложных и хитроумных форм.

К преимуществам пластмасс также можно отнести их высокую коррозионную стойкость, устойчивость к атмосферным воздействиям, кислотам, щелочам и прочим агрессивным продуктам химии, отличные электро- и теплоизоляционные свойства, высокий коэффициент шумоподавления Словом, неудивительно, почему полимерные материалы находят столь широкое применение в автомобилестроении.

Предпринимались ли попытки создать полностью пластмассовый автомобиль? А как же! Вспомнить хотя бы небезызвестный «Трабант», выпускавшийся в Германии более 40 лет назад на заводе в Цвик-кау — его кузов был целиком изготовлен из слоистого пластика.

Для получения этого пластика 65 слоев очень тонкой хлопчатобумажной ткани (поступавшей на завод с текстильных фабрик), чередующихся со слоями размолотой крезолоформальдегидной смолы, спрессовывались в очень прочный материал толщиной 4 мм при давлении 40 атм. и температуре 160 °С в течение 10 мин.

До сих пор кузова гэдээровских «Трабантов», про которые пели песни, рассказывали легенды (но чаще сочиняли анекдоты), лежат на многих свалках страны. Лежат но ведь не ржавеют!

Trabant. Самый популярный в мире автомобиль из пластика

Шутки шутками, а перспективные разработки цельнопластмассовых кузовов серийных авто есть и сейчас, многие кузова спортивных автомобилей целиком изготавливаются из пластика. Традиционно металлические детали (капоты, крылья) на многих автомобилях сейчас также меняют на пластиковые, например, у автомобилей Citroën, Renault, Peugeot и других.

Вот только в отличие от кузовных панелей народного «Траби», пластиковые детали современных автомобилей уже не вызывают иронической улыбки. Напротив — их стойкость к ударным нагрузкам, способность деформированных участков к самовосстановлению, высочайшая антикоррозионная стойкость и малый удельный вес заставляют проникнуться к этому материалу глубоким уважением.

Завершая разговор о достоинствах пластмасс нельзя не отметить тот факт, что хоть и с некоторыми оговорками, но все-таки большинство из них отлично поддается окрашиванию. Не имей серая полимерная масса такой возможности, вряд ли бы она снискала такую популярность.

Зачем красить пластик?

Необходимость окрашивания пластмасс обусловлена с одной стороны эстетическими соображениями, а с другой — необходимостью защищать пластики. Ведь ничего вечного нет. Пластики хоть и не гниют, но в процессе эксплуатации и воздействия атмосферных влияний, они все равно повергаются процессам старения и деструкции. А нанесенный лакокрасочный слой защищает поверхность пластика от различных агрессивных воздействий и, следовательно, продлевает срок его службы.

Если в условиях производства окрашивание пластмассовых поверхностей производится очень просто — в данном случае речь идет о большом количестве новых одинаковых деталей из одной и той же пластмассы (да и технологии там свои), то маляр в авторемонтной мастерской сталкивается с проблемами разнородности материалов различных деталей.

Вот здесь то и приходится ответить себе на вопрос: «Что вообще такое пластмасса? Из чего ее делают, каковы ее свойства и основные виды?».

Что такое пластмасса?

В соответствии с отечественным государственным стандартом:

Пластмассами называются материалы, основной составной частью которых являются такие высокомолекулярные органические соединения, которые образуются в результате синтеза или же превращений природных продуктов. При переработке в определенных условиях они, как правило, проявляют пластичность и способность к формованию или
деформации.

Если из такого сложного даже для чтения, а не только для понимания, описания убрать первое слово «пластмассами», пожалуй, вряд ли кто догадается, о чем вообще идет речь. Что ж, попробуем немного разобраться.

«Пластмассы» или «пластические массы» назвали так потому, что эти материалы способны при нагреве размягчаться, становиться пластичными, и тогда под давлением им можно придать определенную форму, которая при дальнейшем охлаждении и отверждении сохраняется.

Основу любой пластмассы составляет полимер (то самое «высокомолекулярное органическое соединение» из определения выше).

Слово «полимер» происходит от греческих слов «поли» («много») и «мерос» («части» или «звенья»). Это вещество, молекулы которого состоят из большого числа одинаковых, соединенных между собой звеньев. Эти звенья называют мономерами («моно» — один).

Так, например, выглядит мономер полипропилена, наиболее применяемого в автомобилестроении типа пластика:

Молекулярные цепи полимера состоят из практически бесчисленного числа таких кусочков, соединенных в единое целое.

ЭТО ИНТЕРЕСНО:  Как из дрели сделать фрезер

Цепочки молекул полипропилена

По происхождению все полимеры делят на синтетичес­кие и природные. Природные полимеры составляют основу всех животных и растительных организмов. К ним относят полисахариды (целлюлоза, крахмал), белки, нуклеиновые кислоты, натуральный каучук и другие вещества.

Хотя модифицированные природные полимеры и находят промышленное применение, большинство пластмасс являются синтетическими.

Синтетические полимеры получают в процессе химического синтеза из соответствующих мо­номеров.

В качестве исходного сырья обычно применяются нефть, природный газ или уголь. В результате химической реакции полимеризации (или поликонденсации) множество «маленьких» мономеров исходного вещества соединяются между собой, будто бусины на ниточке, в «огромные» молекулы полимера, который затем формуют, отливают, прессуют или прядут в готовое изделие.

Так, например, из горючего газа пропилена получают пластик полипропилен, из которого делают бамперы:

Теперь вы наверное догадались, откуда берутся названия пластмасс. К названию мономера добавляется приставка «поли-» («много»): этилен → полиэтилен, пропилен → полипропилен, винилхлорид → поливинилхлорид и т.д.

Международные краткие обозначения пластмасс являются аббревиатурами их химических наименований. Например, поливинилхлорид обозначают как PVC (Polyvinyl chloride), полиэтилен — PE (Polyethylene), полипропилен — PP (Polypropylene).

Кроме полимера (его еще называют связующим) в состав пластмасс могут входить различные наполнители, пластификаторы, стабилизаторы, красители и другие вещества, обеспечивающие пластмассе те или иные технологические и потребительские свойства, например текучесть, пластичность, плотность, прочность, долговечность и т.д.

Виды пластмасс

Пластмассы классифицируют по разным критериям: химическому составу, жирности, жесткости. Но главным критерием, который объясняет природу полимера, является характер поведения пластика при нагревании. По этому признаку все пластики делятся на три основные группы:

  • термопласты;
  • реактопласты;
  • эластомеры.

Принадлежность к той или иной группе определяют форма, величина и расположение макромолекул, наряду с химическим составом.

Термопласты (термопластичные полимеры, пластомеры)

Термопласты — это пластмассы, которые при нагреве плавятся, а при охлаждении возвращаются в исходное состояние.

Эти пластмассы состоят из линейных или слегка разветвленных молекулярных цепей. При невысоких температурах молекулы располагаются плотно друг возле друга и почти не двигаются, поэтому в этих условиях пластмасса твердая и хрупкая.

При небольшом повышении температуры молекулы начинают двигаться, связь между ними ослабевает и пластмасса становится пластичной.

Если нагревать пластмассу еще больше, межмолекулярные связи становятся еще слабее и молекулы начинают скользить относительно друг друга — материал переходит в эластичное, вязкотекучее состояние. При понижении температуры и охлаждении весь процесс идет в обратном порядке.

Если не допускать перегрева, при котором цепи молекул распадаются и материал разлагается, процесс нагревания и охлаждения можно повторять сколько угодно раз.

Это особенность термопластов многократно размягчаться позволяет неоднократно перерабатывать эти пластмассы в те или иные изделия. То есть теоретически, из нескольких тысяч стаканчиков из-под йогурта можно изготовить одно крыло. С точки зрения защиты окружающей среды это очень важно, поскольку последующая переработка или утилизация — большая проблема полимеров. Попав в почву, изделия из пластика разлагаются в течение 100–400 лет!

Кроме того, благодаря этим свойствам термопласты хорошо поддаются сварке и пайке. Трещины, изломы и деформации можно легко устранить посредством теплового воздействия.

Большинство полимеров, применяемых в автомобилестроении, являются именно термопластами. Используются они для производства различных деталей интерьера и экстерьера автомобиля: панелей, каркасов, бамперов, решеток радиатора, корпусов фонарей и наружных зеркал, колпаков колес и т.д.

Источник: https://artmalyar.ru/pokraska/okraska-plastika-first.html

Подробно об самых распространенных термопластичных полимерах

Термопластичный полимер представляет собой материал, способный неоднократно при нагревании становиться более мягким, а при охлаждении возвращать свою твердость. Свойства этих веществ можно объяснить за счёт линейной структуры их макромолекул.

Когда во время нагрева им передаётся энергия, связи между молекулами ослабляются, что обеспечивает более свободное движение относительно друг друга, сам же полимер становится аморфным или при повышении температуры переходит в жидкое агрегатное состояние.

Именно это свойство используют при создании различного рода изделий из термопластичных полимеров, или при сращивании двух деталей при помощи сварки.

Особенности перевода полимеров в вязкое состояние

Необходимо отметить, что при практическом применении далеко не все термопластичные полимеры переводятся жидкое агрегатное состояние так легко. Это связано с тем, что у некоторых веществ температура термического разложения меньше, чем температура, при которой они приобретают жидкое агрегатное состояние.

Решают такую проблему путем использования разного рода технологических приемов, которые позволяют снизить порог температуры вязкости (с помощью добавления пластификаторов), или наоборот, повышая температуру термодеструкции (с помощью добавления специальных стабилизаторов или обрабатывая сырье в среде инертных газов).

За счёт линейного типа строения молекулы термопласт отличается свойством раздуваться, также это позволяет им легко растворяться в подходящем ему растворителе (который необходимо подбирать в зависимости от химсостава полимера). При этом любой раствор с содержанием уже 2 процентов таких веществ характеризуется повышенной вязкостью. Причиной такого свойства становятся крупные молекулы полимеров, если сравнивать с обычными веществами.

Если растворитель испаряется, полимер возвращается в своё изначальное состояние и становится твёрдым. Именно таким образом и используются различные клеи, вяжущие компоненты мастик, многие виды красок, созданных с использованием термопластичных полимеров.

Основными минусами этой группы полимеров можно назвать:

  • низкую теплостойкость (в пределах 85-125 градусов Цельсия);
  • повышенную хрупкость при понижении температуры;
  • повышенную текучесть при высокой температуре;
  • стареет при попадании ультрафиолета;
  • окисляется под воздействием атмосферного кислорода;
  • имеет пониженную поверхностную твердость.

Самой большой популярностью при строительных производствах и в быту пользуются такие термопласты:

  • полиэтилен;
  • полипропилен;
  • полистирол.

Существует и множество других термопластичных полимеров, но в большинстве своем они являются производными от этих трех, и используются гораздо реже.

Полипропилен

Другим известным термопластом является полипропилен, который создаётся путём полимеризации соответствующего газа при помощи растворителей.

Во время синтеза полипропилен способен образовывать сразу несколько отличающихся по структурным формулам полимеров: изотактические, атактические, а также синдиотактические. Тактичностью называют способ установки боковых групп относительно основных в молекулярных цепях полимерного материала.

Чаще всего можно встретить именно изотактические полипропиленовые соединения, в которых каждая метальная группа располагается с одной стороны в макромолекуле.

Одним из главных отличий от полиэтилена является повышенная твёрдость и прочность, а также более высокая температура размягчения, достигающая 170 градусов Цельсия.

Однако этот материал менее стоек к отрицательным температурам, и становится хрупким уже при 20 градусах по Цельсию ниже нуля. Плотность его практически одинакова с полиэтиленом – 930 кг/м3, а прочность при растяжении доходит до 30 МПа.

Полипропилен применяется там же, где полиэтилен, но изделия из этого полимера отличаются устойчивой формой и высокой жесткостью.

Атактическим полипропиленом называют подвид этого материала, в котором каждая метальная группа расположена случайным образом с двух сторон цепи общей молекулы. Во время синтеза пропилена является неизбежной примесью, однако его легко отделить при помощи экстракции.

АПП представляет собой более мягкий и менее плотный продукт, температура плавления которого находится в пределах 30-80 градусов, что позволяет расплавить его буквально в человеческой руке.

Применение ему нашли в качестве модификатора битумной композиции при создании кровельного материала.

Синдиотактический полипропилен получают с использование специальных металлоценовых катализаторов. Он представляет собой полимер, в котором метальные группы, так же как и в АПП, располагаются по обеим сторонам основной цепи, однако делают это более упорядоченно. Большинство физических свойств данного полимера схожи с резиной, потому его часто применяют в качестве эластомера.

Полистирол

Полистирол представляет собой термопластичный полимер с прозрачной поверхностью и достаточно большой жёсткостью, его плотность достигает 1080 кг/м3. При нормальных температурах этот материал достаточно твердый и одновременно хрупкий, размягчаться начинает при температуре выше 80 градусов по Цельсию.

Растворим полистирол при помощи ароматических углеводородов или с использование сложных эфиров. Также этот материал помимо повышенной хрупкости обладает и повышенной горючестью.

Защищён от агрессивного воздействия щелочей и серных кислот, что позволяет использовать его во многих промышленных отраслях, является светостойким и светопроницаемым.

Получают полистирол из стирола (прозрачная легко воспламеняемая жидковатая смесь, что вырабатывается в процессе гидролиза нефтепродуктов, которая довольно просто полимеризируется при помощи действия солнечного света и нагревания). Выпускаются он подобно другим полимерам в форме гранул или белого порошка, которые на производстве перерабатывают в необходимые изделия.

Полистирол активно применяется в строительстве, его вспененную форму используют в качестве теплоизоляционного материала – пенополистирола, плотность которого варьируется в пределах 10-50 кг/м3, что позволяет осуществлять транспортировку и установку панелей без особых физических усилий. Также из этого полистирола делают облицовочную плитку и различную мелкую фурнитуру. Используя его вместе с органическими растворителями можно получить качественный клей.

Источник: https://polimerinfo.com/kompozitnye-materialy/termoplastichnye-polimery.html

Термопластичные полимеры

Наука различает два вида полимеров – натуральные и синтетические. Синтетические полимеры получаются путем очистки, модификации, температурной обработки и разбавления натурального полимера. По отношению к нагреву полимеры могут быть термопластичными и термореактивными. Термопластичные полимеры становятся мягкими при нагревании, и вновь затвердевают при снижении температуры.

Термопластичные полимеры

Полимер – длинная цепочка макромолекул, которые выстроены в одинаковые множественно повторяющиеся звенья. Эти звенья называют мономерами, они соединены в цепочку ковалентными химическими связями.

Полимеры отличаются большим количеством звеньев – от сотен до десятков тысяч. По своей молекулярной структуре полимеры делятся на:

  • линейные;
  • сетчатые;
  • разветвленные;
  • пространственные.

Линейные полимеры могут быть также и термопластичными. Это обусловлено их физическими свойствами по изменению структуры, пластичности при воздействии на них повышенных температур. Линейный полимер считаются более мягким и менее прочным чем разветвленный вид.

Термопластичные полимеры способны при нагревании становиться мягкими, а при охлаждении возвращаться в исходное состояние. Химические связи между молекулами не разрушаются, поэтому при многочисленном нагреве продукт не теряет своих свойств.

Свойства и применение

Термопластичными называют полимеры, которые при нагревании переходят из твердого состояния в мягкое, тягучее, а при охлаждении снова принимают твердую форму. Данные элементы получают реакцией полимеризации. Эта реакция проходит под большим давлением и без применения примесей. Реакция полимеризации стала возможна только благодаря современной химии и специализированной аппаратуре. Получить данный процесс в естественных условиях невозможно.

Свойства термопластичных полимеров вызваны способом соединения мономеров – соединение осуществляется в одном месте, в одном направлении. Другими словами, молекулы соединены между собой в линию при линейном виде, и в виде нескольких линий, сплетенных в паутину, при разветвленной структуре.

При нагревании эти связи слабеют, и полимер размягчается. Такая простота обработки обуславливает широкое применение материалу при производстве формовочных деталей и других сложных изделий.

Термопластичные полимеры хорошо плавятся, а также растворяются в реагентах и растворителях. При испарении растворителя материал твердеет и приобретает прежние свойства. Это качество применяется при производстве различных клеев, лаков, красок, герметиков, замазок и других строительных растворов, имеющих в своем составе полимеры.

Из термопластичных полимеров выделяют:

  • полиолефины;
  • полиамиды;
  • поливинилхлориды;
  • фторопласты;
  • полиуретаны;
  • поликарбонаты;
  • полиметилметакрилаты;
  • полистирол.

ПолиамидПолиоэфин

На основании полимеров, исходных веществ и способов обработки выделяют следующие окончательные продуты:

  1. пластмассы;
  2. волокниты;
  3. пленки;
  4. покрытия;
  5. слоистые пластики;
  6. клеи.

Самое широкое применение термопластичные полимеры получили в строительстве при изготовлении материалов для изоляции, органических стекол, пленок и покрытий различной плотности и толщины, тонких волокон, а также в качестве связующих основ для клеев, штукатурок и теплоизоляционных материалов.

Из полимеров изготавливают бутылки и различные по форме сосуды, тару, трубы, детали машин оргтехники, компьютеров и электронного оборудования. А также используют при производстве напольного покрытия — линолеума, плитки, плинтусов, отделочных декоративных пленок, настенных панелей и пластика.

Другие распространенные термопластичные полимеры

Также можно выделить еще целый ряд полимеров, которые хорошо зарекомендовали себя в строительстве, робототехнике и производстве бытовых приборов, деталей и компонентов для них.

Поливинилхлорид широко применяется при производстве пластмасс, используемых в конечных изделиях в строительстве: линолеум и декоративная плитка, водопроводные трубы, плинтуса, запасные части, шестеренки, и других подвижные детали бытовых приборов и техники.

Поликарбонат – новый вид полимера, который нашел широкое применение при производстве электрических розеток и вилок напряжением 220 и 380 Вольт, а также корпусов бытовой техники.

Поливинилацетат – очень часто применяется в строительстве в виде связующих компонентов для лаков, красок, как пластификатор для цементных растворов.

Фторопласт – считается фторсодержащим полимером. Материал широко применяются в электро- и радиотехнике, при производстве водопроводных труб, вентилей и кранов, бытовых и промышленных насосов, медицинских инструментов и техники, в криогенных емкостях для нанесения на поверхность.

Лист сотового поликарбонатаФторопласт

Из всего сказанного можно сделать вывод, что повседневно нас окружают изделия, техника, посуда и приборы, которые изготовлены или содержат в своей основе термопластичные полимеры. Такую популярность им придают эксплуатационные свойства, такие как твердость, стойкость к кислотам и щелочам, долговечность, универсальность и легкость в обработке, малый вес и большой диапазон рабочих температур.

Нейтральный цвет всех полимеров позволяет с легкостью окрашивать заготовки и конечный продукт в любую желаемую палитру. Это дает возможность подбирать готовые изделия из пластмасс под цвет комнаты и интерьера любой формы и сложности исполнения.

Источник: https://stankiexpert.ru/spravochnik/materialovedenie/termoplastichnye-polimery.html

Термопластичные полимеры (пластмасса, силикон): свойства, применение — Токарь

18.12.2019

В современном строительстве термопластичные полимеры находят самое широкое применение благодаря сочетанию прочности, долговечности и универсальности. В отличие от термореактивной пластмассы, термопласты могут размягчаться при нагревании, а затем отвердевать и восстанавливать исходные свойства при остывании. Эта особенность позволила стать таким материалам, как полиэтилен, ПВХ и полипропилен одними из ключевых в строительстве.

Понравилась статья? Поделиться с друзьями:
Электропривод
Tig сварка что это такое

Закрыть