Что такое полимеры в химии

Полимерные материалы и их классификация

что такое полимеры в химии

Все, что окружает человека в быту, на работе или транспорте – изготовлено из материалов, которые обладают различными свойствами и характеристиками. Искусственное сырье создается человеком с помощью прогрессивных технологий, которые периодически обновляются. К такому ресурсу относят полимерные материалы, в состав которых входят как натуральные, так и искусственные элементы.

С каждым годом доля искусственных материалов, применяемых в различных отраслях народного хозяйства, увеличивается благодаря разнообразию физических свойств и структуры такого сырья, как полимерные материалы.

Благодаря большому количеству мономерных звеньев в структуре молекулы полимера, такой материал обладает прочностью наряду с эластичностью и практичностью.

Молекулярная масса полимерного сырья имеет высокую массу, которая может измеряться как несколькими тысячами единиц, так и несколькими миллионами.

Полимерные материалы, в большей степени состоят из органики, при этом часто попадается и неорганический полимер. Изготавливают сырье синтетическими методами, с помощью соединения природных элементов по технологии полимеризации, конденсации или другого химического процесса. Составляющими элементами такого ресурса, как полимерные материалы являются:

  • нуклеиновые кислоты;
  • каучук;
  • белки;
  • полисахариды;
  • другие подобные элементы.

Прочность материалов достигается за счет повторения высокомолекулярных типов групп атомов, такое сырье называют сотополимером или гетерополимером. Характерным признаком ресурса является периодическое повторение структурного фрагмента, так называемого – мономерного звена. Примером такого повторения может быть поливинилхлорид или каучук.

При наличии слабой связи между макромолекулами полимерные материалы называют термопластами, наличие химической связи между звеньями позволяет отнести сырье к реактопластам. К линейному характеру соединений относят целлюлозу, а к разветвленному – амилопектин. Существуют также разновидности более сложных трехмерных пространственных связей.

Классификации полимерных материалов

Зависимо от происхождения полимеры разделяют на синтетические и природные. Несмотря на востребованность природных составляющих, материалы искусственного происхождения, которые производят на низкомолекулярной основе, благодаря синтезу, пользуются большим спросом.

Различия по химическому составу позволяет делить полимерные материалы на:

  • неорганические, у которых нет однотипных соединений, при этом есть органические радикалы, в качестве дополнительных составляющих;
  • элементоорганические полимеры, отличаются способностью удерживать в органическом радикальном соединении, атомы неорганики, хорошо сочетающихся с органикой;
  • органические, которые используют, как основу для пластмассовых изделий.

Характерным отличием структуры, влияющим на свойства материала оказывает макромолекула. Ее вид позволяет разделить полимеры на:

  • плоские;
  • ленточного типа;
  • разветвленной структуры;
  • линейного характера;
  • сетчатого типа;
  • гребнеобразные полимеры;
  • прочие виды.

По свойствам соединений звеньев, полимерные материалы делят по полярности, влияющую на растворимость материалов в разных средах. Ее определяют по разобщению положительных и отрицательных зарядов. Характера этих связей позволяет разделить полимеры на:

  • гидрофильные;
  • гидрофобные;
  • амфильные.

Иначе говоря, можно отнести перечисленные категории к полярным, неполярным или смешанным. Кроме этого, полимеры имеют разные свойства при изменении температуры. Они бывают:

  • термопластичные, имеющие свойство размягчения, при увеличении градуса, а при понижении – твердеют;
  • термореактивные, подвержены разрушению структурных связей между звеньями.

Явным примером, подчеркивающим различие структуры, будет письмо, отправленное по почте, предварительно заклеенное в конверт. В процессе транспортировки, тщательно склеенные поверхности остаются невредимыми. Но стоит нагреть обработанное место на огне или с помощью раскаленного металлического предмета, как клей утратит свои свойства и конверт откроется.

Полимерные материалы делят на два типа: синтетический (искусственный) и огнеупорный. Синтетика встречается в различных сферах жизнедеятельности человека: в строительстве, промышленности, быту и даже – в одежде. Производство искусственного сырья началось в первые годы ХХ века. Первым запатентованным материалом была бакелитовая смола, которая при нагревании меняла форму.

Современные синтетические материалы подвержены влиянию огня и высоких температур, а некоторые из них могут воспламеняться. Чтобы избежать подобное используют добавки, а также синтезируют сырье с помощью хлора или брома.

Галогенированный полимерный материал, который получается после обработки, при сжигании образует газ, способствующий повышению коррозии других материалов.

Разнообразие структур полимеров по химическому составу позволяет разделить материалы на несколько видов, которые находят все большее применение в народном хозяйстве.

  1. Полиэтилен Известен по широко применяемой упаковке различного назначения. Свойства и низкая себестоимость сделала такие материалы популярными в разных отраслях. Различают полиэтилен низкого давления, который обладает прочной структурой молекул и высокого давления, с противоположными свойствами. Эти материалы имеют одинаковы по химическому составу, но различаются по структуре решетки.
  2. Полипропилен Прозрачный полимер изготовленный методикой экструзии с охлаждением методом полива или другим способом с раздувом. Не контактирует с маслами и жирами, не деформируется при температурных изменениях, пропускает водяные пары. Эти свойства материала применяются в пищевой и строительной отрасли.
  3. Поливинилхлорид Такие материалы с полимерной основой встречается реже других из-за способности быть хрупким и не эластичным. Был популярен в 60-е годы прошлого столетия, при сжигании образует диоксин. Современные материалы вытесняют эти полимеры за счет более высокой экологичности и улучшения структуры сырья.
  4. Полиолефин Благодаря разнообразному строению макромолекул, эти полимеры включает в себя составляющие элементы пропилена и полиэтилена. Более половины производимой полимерной продукции относят к полиофелинам. Стойкость к разрыву, нагреву и усадке, позволит в ближайшем будущем увеличить объемы изготовления этого сырья. Тем более, что экологичность, которой обладают такие материалы выше других полимеров, а при производстве и утилизации – не выделяет вредных веществ.

Свойства

Внутреннее строение трехмерных форм полимера, соединенных вследствие полимеризации, а в некоторых случаях поликонденсации, четко выявлена и часто просматривается на изломе и разрыве материала. Основная часть полимеров – это органические соединения, при этом встречаются нередко – неорганические варианты.

Свойства полимерных материалов определяются в большей степени строением макромолекул, из которых они состоят. Для изменения характеристик материала используют различные добавки:

  • смазки, которые позволяют избежать прилипания полимерной структуры к металлическим поверхностям оборудования, на котором производится переработка;
  • красители, применяемые в декоративных целях;
  • инсектициды и антисептики, способствующие устойчивости к плесени и воздействию насекомых;
  • антиперенами, позволяющими снизить горючесть полимеров;
  • пластификаторами, с помощью которых снижается температура переработки, повышается морозоустойчивость и улучшается эластичность;
  • наполнители в различном фазовом состоянии позволяют изменить специфические свойства материалов;
  • стабилизаторы, способствующие улучшению прочности полимерных материалов и увеличению срока службы.

Для большинства полимеров характерны различные механические свойства, которые зависят от структуры и внешних факторов воздействия:

  • нагрузки, давления, температуры. Из достоинств полимерных материалов можно выделить такие как: простота механической обработки;
  • водо- и газонепроницаемость;
  • способность к свариванию и склеиванию; химическая устойчивость; низкая теплопроводность;
  • высокая прочность и эластичность;
  • малая плотность;
  • является диэлектриком.

Как и любой другой материал, полимеры обладают недостатками:

  • горючесть;
  • слабая твердость;
  • ускоренное старение;
  • повышенная ползучесть;
  • способность к тепловому расширению;
  • низкая теплостойкость.

Основной характеристикой полимеров считают их деформируемость. Именно по этому признаку в различных температурных режимах обычно оценивают свойства полимерных материалов.

Применение

Благодаря преимуществам полимерных материалов перед другими видами сырья, их использование с каждым годом становится более популярным. Применение полимеров встречается повсюду: в легкой и тяжелой индустрии, сельскохозяйственной и медицинской отрасли. Каждый день приходится сталкиваться с продукцией из полимерных материалов.

При строительстве зданий стали заменять металлические конструкции – пластиковыми. Это окна, армирующие сетки, а также приспособления и инструмент. Геосинтетические материалы широко используются при возведении дорог.

С помощью сеток из синтетических материалов изготавливают поддерживающую оснастку вьющимся растениям для сельского хозяйства. Устройство декоративных заборов с применением пластика также стало популярным благодаря устойчивости к коррозии, которой обладает полимерная сетка.

Геотекстиль и геомембрана используют при возведении бассейнов и искусственных водоемов. Такие полимеры защищают мембрану от грунта и обладают гидроизоляцией.

Упаковка различных товаров производится с помощью полимерных пленок и других видов упаковок, как в супермаркете, так и на рынке. Изготовление несущих конструкций авто- и мототехники позволяет облегчить вес транспортных средств и избежать пагубного воздействия коррозии.

Применение полимерных материалов в производстве и быту становится все популярнее с каждым годом. Низкая стоимость и желаемые технические параметры сырья постепенно вытесняют привычные изделия текстильной, строительной и даже металлургической промышленности. Удобство обработки и химические свойства полимерных изделий повышают качество и продлевают срок службы привычных предметов, создающих комфортные условия для активной жизнедеятельности человека.

Источник: https://prompriem.ru/stati/polimernye-materialy.html

Синтетические полимеры

что такое полимеры в химии

Полимеры относятся к классу химических соединений, у которых короткие структурные единицы, состоящие из нескольких атомов (мономеров), соединенных в длинные цепочки при помощи различного рода связей. Характерная особенность полимеров – большая молекулярная масса – от нескольких тысяч, до миллионов. Натуральные и созданные позже синтетические полимеры характеризуются следующими свойствами:

  • эластичность – способность выдерживать сильные деформирующие усилия без разрушения;
  • прочность;
  • способность макромолекул (молекулярных цепочек) к определенной ориентации по отношению друг к другу.

Синтетические полимеры

Точная классификация подразделяет многочисленное семейство полимеров на органические и неорганические. Наиболее востребованы, имеют большой ассортимент разновидностей с различными свойствами органические соединения, которые основаны на углеродных цепочках.

Одним из первых полимеров, созданным человеком на основе природных материалов, стала резина, производимая путем вулканизации каучука, и целлулоид, имеющий в основе целлюлозу.

Дальнейшее создание и производство полимерных материалов базировалось на достижениях органической химии.

Особенности

Синтетические полимеры имеют в своей основе низкомолекулярные органические соединения (мономеры), которые в результате реакций полимеризации или поликонденсации образуют длинные цепочки. Расположение и конфигурация молекулярный цепей, тип их связи во многом определяют механические характеристики полимеров.

Искусственные и синтетические полимеры обладают радом специфических особенностей. На первом месте следует отметить их высокую эластичность и упругость – способность противостоять деформациям и восстанавливать первоначальную форму. Пример – полиамид, резина.

Полиуретановая нить – эластан, способна без разрыва изменять свою длину на 800 % и затем восстанавливать первоначальный размер. Наличие длинных молекулярных цепочек в структуре синтетических материалов обусловило низкую хрупкость пластиковых изделий.

В большинстве случаев увеличение хрупкости у некоторых типов пластмасс происходит при понижении температуры. Органические материалы практически полностью лишены этого недостатка.

Отдельные типы пластиков, наоборот, имеют высокую жесткость и твердость. Стеклотекстолит по прочности мало уступает стали, а такой полимер, как кевлар, даже превосходит ее.

Указанные свойства дополняются высокой коррозионной стойкостью, износостойкостью. Большинство известных полимеров имеют высокое электрическое сопротивление, низкую теплопроводность.

Отмечая высокие эксплуатационные и технологические качества, нельзя забывать и про отрицательные стороны:

  • Сложность утилизации. Вторичное использование допускает только термопластичный материал и только в случае правильной сортировки. Смесь полимеров с различным химическим составом вторичной переработке не подлежит. В природе пластики разлагаются чрезвычайно медленно – вплоть до десятков и сотен лет. При сжигании некоторых типов пластмасс в атмосферу выделяется большое количество высокотоксичных веществ и соединений. Особенно это касается пластиков, содержащих галогены. Наиболее известный материал такого типа – поливинилхлорид (ПВХ).
  • Слабая устойчивость к ультрафиолетовому излучению. Под действием ультрафиолетовых лучей длинные полимерные цепочки разрушаются, увеличивается хрупкость изделий, снижается прочность, холодостойкость.
  • Трудность или невозможность соединения отдельных типов синтетических материалов.

Пластмассы

Химические свойства полимеров показывают их высокую стойкость к агрессивным веществам, но в ряде случаев затрудняет использование клеевых составов. Поэтому для термопластичных полимеров используют метод сварки – соединение разогретых элементов. Некоторые вещества, например, фторопласты, вообще не подлежат соединениям, кроме механических.

Без преувеличения можно сказать, что полимеры нашли применение абсолютно во всех областях деятельности и жизни человека. Синтетические полимеры используются в быту и промышленности как самостоятельные изделия, так и в качестве замены традиционных материалов или в комплексе с ними для получения уникальных характеристик.

Первое применение нашли искусственные полимеры. Самый яркий пример – резина. В настоящее время основная часть резиновых изделий выполняется из синтетического каучука, но имеется несколько областей применения, где до сих пор используется резина из натурального каучука.

Синтетический каучук

Полимеры обладают целым комплексом уникальных качеств, которых нет у традиционных материалов, или использование последних технологически и экономически нецелесообразно. Устойчивость к химическим реакциям в большом диапазоне температур и по отношению к большой группе активных химических соединений способствует большому распространению полимерных материалов в химии и химической промышленности.

Низкая токсичность, химическая устойчивость, отсутствие аллергических реакций позволило синтетическим полимерам найти широкое применение в медицине. Это искусственные органы, производство лекарств – от упаковок, до оболочек медицинских препаратов (таблеток, капсул), шовные материалы, клеи.

Пищевая упаковка из полимерных материалов

Те же самые качества используются и в пищевой промышленности для изготовления посуды, упаковочной тары для готовых продуктов и в процессе их производства. Себестоимость упаковки синтетической тары в несколько раз меньше, чем у картонной, бумажной или из иных натуральных материалов.

В промышленности высокомолекулярные полимерные соединения используются для производства конструкционных материалов, узлов трения, несущих конструкций, лаков и красок.

Благодаря превосходным электроизолирующим свойствам пластики практически полностью вытеснили натуральные материалы в электротехнической промышленности. Изоляция проводов, корпуса приборов, печатные платы изготавливаются на основе полимерных материалов.

Жесткие обмоточные провода покрываются слоем синтетических лаков, при малой толщине обладающих высоким сопротивлением и прочностью, а гибкие монтажные проводники имеют оболочку из поливинилхлорида или полиэтилена, окрашенную в различные цвета для удобства обслуживании и ремонта.

На основе синтетических полимеров изготавливаются текстильные материалы большинства известных наименований. Ткани и одежда имеют в своем составе пряжу на основе полиамида, полиэстера, полипропилена. Как альтернатива натуральной шерсти выступает акрил, изделия из которого трудно отличить от натуральных.

ЭТО ИНТЕРЕСНО:  Где применяют инструментальную углеродистую сталь

Тот же самый полиамид, который служит заменой шелку, в монолитном состоянии имеет прочность, сравнимую со многими металлами. Если учесть, что полиамид, иначе называемый капрон или нейлон, химически инертен, а значит, не подвержен коррозии и имеет низкий коэффициент трения, то замена металлов синтетическими веществами вполне очевидна.

Еще более высокие качества имеют такие промышленные полимеры, как фторопласты – фторорганические соединения. Данные синтетические полимерные материалы имеют один из самых низких коэффициентов трения и самую высокую химическую устойчивость. Эти качества используются при производстве узлов трения, особенно в устройствах, работающих в агрессивной среде.

Когда нельзя произвести полноценную замену металлических конструкций искусственными материалами, выполняют покрытие металлической основы слоем пластика. Технологический процесс покрытия металла слоем пластика осуществляется таким образом, чтобы происходила связь основы и покрытия на молекулярном уровне. Этим достигается высокая прочность соединения.

Промышленные полимеры могут иметь самые различные виды. Используются как термопластичные материалы, так и термореактивные пластики. В первом случае для изготовления деталей и конструкций используется метод литья или прессовки при температуре размягчения полимера, а во втором пластмасса формируется непосредственно в виде готового изделия или полуфабриката с минимальной последующей обработкой.

Среди промышленных синтетических полимеров можно выделить композиционные материалы, в которых наполнителем или армирующей составляющей могут служить самые различные материалы, а связующим веществом выступает полимер.

Наиболее известны такие композиционные материалы:

  • Стеклопластик – стекловолокно или ткань на его основе, пропитанные эпоксидной полимерной смолой. Данный композит имеет высокую прочность, отличные электроизоляционные свойства, устойчивость к неблагоприятным факторам, высокую огнестойкость.
  • Углепластик – армирующим элементом здесь выступает углеродное волокно. Прочность и упругость конструкций из углепластиков, наряду с их легкостью (значительно легче металлов) послужили поводом для использования в аэрокосмическом направлении промышленности. Комплекс полезных качеств в этой области имеет более высокий приоритет, чем высокая стоимость, связанная с трудоемкостью получения углеродных волокон.
  • Текстолит – тканевый слоистый материал, в котором слои ткани пропитаны полимерным материалом. Ткань используется натуральная или искусственная. Самый прочный и надежный вариант – стеклотекстолит, использующий ткань из стеклянного волокна;
  • Порошковые композиты, имеющие наполнитель из порошкообразных материалов натурального или искусственного происхождения;
  • Газонаполненные материалы – вспененные полимеры. Это всем известный поролон, пенопласт, пенополиуретан. Газонаполненные материалы обладают чрезвычайно низкой теплопроводностью и используются в качестве теплоизоляционных материалов. Мягкость, пластичность наряду с прочностью послужили широкому распространению пенопластовых упаковочных материалов для нетяжелой, но требующей бережного обращения техники.

Классификация синтетических полимеров

Существует несколько классификационных групп полимеров, в зависимости от определяющего признака. В первую очередь, это:

  • Искусственные полимеры, созданные на основе природных органических полимеров (целлюлоза – целлулоид, каучук – резина);
  • Синтетические полимеры, в основе которых синтез из низкомолекулярных соединений (стирол – полистирол, этилен – полиэтилен).

По химическому составу деление таково:

  • Органические, имеющие в составе преимущественно углеводородные цепочки;
  • Элементоорганические, включающие в органические цепочки неорганические атомы (кремний, алюминий). Наиболее яркий пример – кремнийорганические композиции.

В зависимости от типов цепочек молекулярного состава, можно указать следующие виды структуры полимеров:

  • Линейные, у которых мономеры соединены в длинные прямые цепочки;
  • Разветвленные;
  • С сеточной структурой.

Варианты структуры полимеров

Все полимерные соединения по-разному характеризуются по отношению к температуре. Таким образом, их делят на две группы:

  • Термопластичные, для которых воздействие температуры оказывает обратимые изменения – нагрев, плавление;
  • Термореактивные, необратимо изменяющие свою структуру при нагреве. В большинстве случаев этот процесс происходит без стадии плавления.

Существует еще несколько типов классификации полимеров, к примеру, по полярности молекулярных цепочек. Но данная квалификация необходима только узким специалистам.

Многие типы полимеров используются в самостоятельном виде (полиэтилен, полиамид), но значительное количество применяется в качестве композиционных материалов, где выполняет роль связующего элемента между органической и неорганической основой – пластики на основе стеклянных или углеродных волокон. Часто можно встретить комбинацию полимер – полимер (текстолит, у которого полимерная ткань пропитана полимерным связующим).

Источник: https://stankiexpert.ru/spravochnik/materialovedenie/sinteticheskie-polimery.html

Полимеры. Общие сведения

что такое полимеры в химии

Полимерами называют высокомолекулярные химические соединения (ВМС) вещества, обладающие молекулярной массой от тысяч до нескольких миллионов атомных единиц.

Макромолекулы полимеров образовываются из огромного количества повторяющихся мономерных звеньев.

Свойства полимеров зависят от химической природы мономера, молекулярной массы, методом производства полимера, стереоструктурой молекул (расположением в пространстве) и степенью их разветвленности, а также связей между молекулами различной природы.

Большинство полимеров являются по природе диэлектриками, также имеют низкую теплопроводность и достаточно высокие механические характеристики.

Классификация полимеров

Разделение полимеров на четкие классы – достаточно сложное дело. В современной теории существует несколько подразделений полимерных материалов по видам:

  • полимеры могут быть природными или синтетическими, также бывают модифицированные полимеры;
  • по типу реакции образования полимеры делятся на полимеризационные и поликонденсационные;
  • в зависимости от химического состава полимеры подразделяются на неорганические (например, силиконы), органические полимеры (например, полистирол) и элементоорганические полимеры (например, фторопласты). При этом основной вид используемых полимеров – органические;
  • по методу переработки и соответствующему отношению к воздействию на них температуры полимеры делят на термопластичные (термопласты) и термореактивные (реактопласты). Первые способны перерабатываться многократно, вторые – как правило, нет;
  • по составу мономерных звеньев полимеры делят на гомополимеры и сополимеры (гетерополимеры);
  • также полимеры разделяются по строению главной цепи на гомоцепные и гетероцепные, по пространственному расположению мономерных звеньев на стереорегулярные и атактические (нестереорегулярные), по степени разветвления на линейные, разветвленные, лестничные и сшитые и т.д.

Рис. 1 Структура полимеров

Образование полимеров

В природе биологические полимеры или биополимеры получаются естественным путем в процессе жизнедеятельности растительных и животных организмов. Искусственные же полимеры производят как правило нефтехимические и газохимические предприятия путем двух основных видов химических реакций: полимеризации и поликонденсации

Полимеризация – это процесс синтеза полимера путем присоединения повторяющихся цепочек молекул (звеньев) мономера к активному центру роста макромолекулы высокомолекулярного соединения. В упрощенном виде механизм полимеризации можно расписать по следующим стадиям:

  • образование центров полимеризации;
  • рост макромолекул полимера при присоединения очередных звеньев;
  • возникновение новых центров полимеризации на других молекулы и их интенсивный рост;
  • возникновение разветвленных молекул полимеров;
  • прекращение роста макромолекул.

Обычно полимеризация не возникает при нормальных условиях. Для начала химического процесса полимеризации на низкомолекулярное сырье оказывают разнообразные методы воздействия в зависимости от каждого конкретного техпроцесса: воздействие светом или другим типом облучением, повышенным давление, высокими температурами.

При этом, наиболее эффективно процесс идет в среде катализатора, подбираемого для каждого конкретного процесса получения определенного полимера персонально.

При образовании полимеров при помощи полимеризации не выделяется побочных веществ реакции, химический состав веществ остается неизменным, но меняется структура связей в веществе.

Рис. 2 Завод по производству полиэтилена

Поликонденсация – это процесс синтеза полимеров из низкомолекулярных веществ при помощи перегруппировки атомов выделения побочных продуктов поликонденсации. Это могут быть различные низкомолекулярные соединения, например вода. Методом поликонденсации выпускают такие крупнотоннажные полимеры, как полиуретаны, поликарбонаты, фенолоальдегидные смолы.

Основные свойства полимеров

Строение макромолекул в виде цепи, а также различные типы связей между ними, возникшие при образовании молекул, определяют природу специальных физико-химических характеристик полимеров.

Среди них важная особенность к пленко- и волокнообразованию, способности полимеров к вытяжке, прочности в определенных направлениях, эластичности и т.п. Такое строение полимерных молекул определяет тот факт, что вязкость растворов полимеров обычно высока.

ВМС могут в высокой степени набухать в жидкостях, при этом образуя несколько видов систем, по свойствам находящихся между твердым жидким агрегатным состояниями.

Количество мономерных звеньев в макромолекулах полимеров и природа звена определяют молекулярную массу всего ВМС. Любой полимер всегда состоит из множества макромолекул, каждая из которых индивидуальна и отличается от других в том числе по длине цепи. Из-за этого факта молекулярная масса полимеров – всегда примерная средняя величина.

Также из описанного следует, что важной характеристикой является молекулярно-массовое распределение (ММР), которое показывает в каком диапазоне молекулярных масс молекулы представлены в конкретном образце полимера. Чем меньше молекулярно-массовое распределение, тем стабильнее свойства полимеров и тем проще описать методики их переработки.

Полимеры могут находиться в нескольких агрегатных состояниях, которые отличаются от состояний обычных низкомолекулярных веществ, например в состоянии вязкотекучей жидкости, эластичном состоянии, такие как каучук, силикон, другие эластомеры, твердых пластмасс.

Типы переработки полимеров в изделия

Несмотря на то, что в повседневной жизни термин «переработка пластмасс» используется в значении сбора и вторичного производства изделий из уже использованного пластика, на самом деле у термина несколько другой смысл. Переработкой полимеров называют получение готовых изделий из синтезированных ранее полимеров, в том числе первичных.

Переработка полимеров, как правило происходит при высоких температурах от 150 до 500 градусов Цельсия в зависимости от природы конкретного полимера. Исключение составляют некоторые термореактивные пластики, например двухкомпонентные разновидности эпоксидных смол или пенополиуретана, которые реагируют при комнатной температуре.

При переработке в полимер могут вводить разные добавки (в случае, например, не применяющегося в качестве чистого вещества ПВХ, добавки практически обязательны) для лучшей перерабатываемости, придания пластмассе нужных свойств или удешевления продукта.

Наиболее употребляемыми аддитивами (добавками для полимеров) являются , например, наполнители, красители, стабилизаторы, пластификаторы, модификаторы, нуклеаторы и т.д.

Классификация полимеров по областям применения

Полимеры, главным образом, термопласты подразделяют по степени роста технических и эксплуатационных характеристик. Основной характеристикой полимера при этом является температура долговременной эксплуатации. В данном случае полимеры с известными допущениями и довольно большими разночтениями у разных авторов разделяют на три категории:

Источник: https://e-plastic.ru/specialistam/polimernie-materiali/polimery-obshie-svedeniya/

Х и м и я

Полимеры (греч. πολύ- — много; μέρος — часть) — это сложные вещества, молекулы которых построены из множества повторяющихся элементарных звеньев – мономеров.

Полимеры являются высокомолекулярными соединениями с большими молекулярными весами (порядка сотен , тысяч и миллионов).

Следующие два процесса приводят к Образованию высокомолекулярных соединений:

1. Реакция полимеризации,

2. Реакция поликонденсации.

Реакция полимеризации

Реакция полимеризации – процесс, в результате которого молекулы низкомолекулярного соединения (мономера) соединяются друг с другом, образуя новое вещество (полимер), молекулярный вес которого в целое число раз больше, чем у мономера.

Полимеризация, главным образом, характерна для соединений с кратными связями (двойной или тройной). Кратные связи в ходе реакции полимеризации преобразуются в простые (одинарные). Высвободившиеся в результате этого преобразования валентные электроны идут на установление ковалентных связей между мономерами.

Примером реакции полимеризации может служить образование полиэтилена из этилена:

Или в общем виде:

Характерной чертой этой реакции является то, что в результате образуется только вещество полимера и никаких побочных веществ, при этом, не выделяется. Этим объясняется кратность весов полимера и исходных мономеров.

Реакция поликонденсации

Реакция поликонденсации – процесс образования полимера из низкомолекулярных соединений (мономеров).

Но в данном случае мономеры содержат две или несколько функциональных групп, которые в ходе реакции теряют свои атомы, из которых образуются другие вещества (вода, аммиак, галогеноводороды и т.д.).

Таким образом, состав элементарного звена полимера отличается от состава исходного мономера, а в ходе реакции поликонденсации мы получаем не только сам полимер, но и другие вещества.

Пример реакции поликонденсации – образование капрона из аминокапроновой кислоты:

В ходе этой реакции аминогруппа (-NH2) теряет один атом водорода, а карбоксильная группа (-СООН) лишается входящей в неё гидроксильной группы (-ОН). Отделившиеся от мономеров ионы образуют молекулу воды.

Природные полимеры

Примерами природных высокомолекулярных соединений (полимеров) могут служить полисахариды крахмал и целлюлоза, построенные из элементарных звеньев, являющихся остатками моносахарида (глюкозы).

Кожа, шерсть, хлопок, шелк – всё это природные полимеры.

Крахмал

Крахмал образуется в результате фотосинтеза, в листьях растений, и запасается в клубнях, корнях, зёрнах.

Крахмал – белый (под микроскопом зернистый) порошок, нерастворимый в холодной воде, в горячей — набухает, образуя коллоидный раствор (крахмальный клейстер).

Крахмал представляет собой смесь двух полисахаридов, построенных из амилозы (10-20%) и амилопектина (80-90%).

Структурные формулы амилозы и амилопектина

Гликоген

Гликоген – полимер, в основе которого лежит мономер мальтоза.

В животных организмах гликоген является структурным и функциональным аналогом растительного крахмала.

Гликоген является основной формой хранения глюкозы в животных клетках.

Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы.

По строению гликоген подобен амилопектину, но имеет ещё большее разветвление цепей.

Целлюлоза

Целлюлоза (или клетчатка) – наиболее распространённый растительный полисахарид. Она обладает большой механической прочностью и выполняет роль опорного материала растений.

Наиболее чистая природная целлюлоза – хлопковое волокно – содержит 85-90% целлюлозы. В древесине хвойных деревьев целлюлозы содержится около 50%.

Белки

Белки – полимеры, элементарные звенья которых представляют собой остатки аминокислот.

Десятки, сотни и тысячи молекул аминокислот, образующих гигантские молекулы белков, соединяются друг с другом, выделяя воду за счёт карбоксильных и аминогрупп. Структуру такой молекулы можно представить так:

Белки – природные высокомолекулярные азотосодержащие органические соединения. Они играют первостепенную роль во всех жизненных процессах, являются носителями жизни. Белки содержатся во всех тканях организмов, в крови, в костях.

Белки содержатся во всех тканях организмов, в крови, в костях. Энзимы (ферменты), многие гормоны представляют собой сложные белки.

Белок, так же как углеводы и жиры, — важнейшая необходимая часть пищи.

Природный каучук

Натуральный (природный) каучук – полимер на основе мономера изопрена.

Природный каучук содержится в млечном соке каучуконосных растений, главным образом, тропических (например, бразильского дерева гевея).

ЭТО ИНТЕРЕСНО:  Что такое температура кристаллизации

Другой природный продукт – гуттаперча – также является полимером изопрена, но с иной конфигурацией молекул.

Сырой каучук липок непрочен, а при небольшом понижении температуры становится хрупким.

Чтобы придать изготовленным из каучука изделиям необходимую прочность и эластичность, каучук подвергают вулканизации – вводят в него серу и затем нагревают. Вулканизированный каучук называется резиной.

Синтетические полимеры — это разнообразные материалы, обычно получаемые из дешёвого и доступного сырья. На их основе получают пластические массы (пластмассы), искусственные и синтетические волокна и пр.

Пластмассы – сложные композиции, в которые вводят различные наполнители и добавки, придающие полимерам необходимый комплекс технических свойств.

Полимеры и пластмассы на их основе, являются ценными заменителями многих природных материалов (металла, дерева, кожи, клеев и т.д.).

Синтетические волокна успешно заменяют натуральные – шёлковые, шерстяные, хлопчатобумажные.

При этом важно подчеркнуть, что по ряду свойств материалы на основе синтетических полимеров часто превосходят природные. Можно получать пластмассы, волокна и другие соединения с комплексом заданных технических свойств. Это позволяет решать многие задачи современной техники, которые не могли быть решены при использовании только природных материалов.

Полимеризационные смолы

К полимеризационным смолам относят полимеры, получаемые реакцией полимеризации преимущественно этиленовых углеводородов или их производных.

Примеры полимеризационных смол: полиэтилен, полипропилен, полистирол, поливинилхлорид и пр.

Полиэтилен.

Полиэтилен – полимер, образующийся при полимеризации этилена.

Или сокращённо:

Полиэтилен – предельный углеводород с молекулярным весом от 10000 до 400000. Он представляет собой бесцветный полупрозрачный в тонких слоях и белый в толстых слоях. Полиэтилен — воскообразный, но твёрдый материал с температурой плавления 110-125 градусов С. Обладает высокой химической стойкостью и водонепроницаемостью, малой газопроницаемостью.

Его применяют в качестве электроизоляционного материала, а также для изготовления плёнок, используемых в качестве упаковочного материала, посуды, шлангов и т.д.

Свойства полиэтилена зависят от способа его получения. Полиэтилен высокого давления обладает меньшей плотностью и меньшим молекулярным весом (10000- 45000), чем полиэтилен низкого давления (молекулярный вес 70000- 400000), что сказывается на технических свойствах.

Для контакта с пищевыми продуктами допускается только полиэтилен высокого давления, так как полиэтилен низкого давления может содержать остатки катализаторов – вредные для здоровья человека соединения тяжёлых металлов.

Полипропилен.

Полипропилен – полимер пропилена, следующего за этиленом гомолога непредельных этиленовых углеводородов.

По внешнему виду это каучукоподобная масса, более или менее твёрдая и упругая.

Отличается от полиэтилена более высокой температурой плавления.

Полипропилен используют для электроизоляции, для изготовления защитных плёнок, труб шлангов, шестерён, деталей приборов, высокопрочного и химически стойкого волокна. Последнее применяют в производстве канатов, рыболовных сетей и т.д.

Плёнки из полипропилена значительно прозрачнее и прочнее полиэтиленовых. Пищевые продукты в упаковке из полипропилена можно подвергать температурной обработке (варке и разогреванию и пр.).

Полистирол

Полистирол образуется при полимеризации стирола:

Он может быть получен в виде прозрачной стеклообразной массы.

Применяется как органическое стекло, для изготовления промышленных товаров (пуговиц, гребней и т.п.).

Искусственный каучук

Отсутствие в нашей стране природного каучука вызвало необходимость в разработке искусственного метода получения этого важнейшего материала. Советскими химиками был найден и впервые в мире осуществлён (1928-1930) в прмышленном маштабе способ получения синтетического каучука.

Исходным материалом для производства синтетического каучука служит непредельный углеводород бутадиен или дивинил, который полимеризуется подобно изопрену.

Исходный бутадиен получают из этилового спирта или бутана, попутного нефтяного газа.

Конденсационные смолы

К конденсационным смолам относят полимеры, получаемые реакцией поликонденсации. Например:

  • фенолформальдегидные смолы,
  • полиэфирные смолы,
  • полиамидные смолы и т.д.

Фенолформальдегидные смолы

Эти высокомолекулярные соединения образуются в результате взаимодействия фенола (С6Н5ОН) с формальдегидом (СН2=О) в присутствии кислот или щелочей в качестве катализаторов.

Фенолформальдегидные смолы обладают замечательным свойством: при нагревании они вначале размягчаются, а при дальнейшем нагревании затвердевают.

Из этих смол готовят ценные пластмассы – фенолопласты. Смолы смешивают с различными наполнителями (древесной мукой, измельчённой бумагой, асбестом, графитом и т.д.), с пластификаторами, красителями и из полученной массы изготавливают методом горячего прессования различные изделия.

Полиэфирные смолы

Примером таких смол может служить продукт поликонденсации двухосновной ароматической терефталевой кислоты с двухатомным спиртом этиленгликолем.

В результате получается полиэтилентерефталат – полимер, в молекулах которого многократно повторяется группировка сложного эфира.

В нашей стране эту смолу выпускают под названием лавсан (за рубежём – терилен, дакрон).

Из неё изготавливают волокно, напоминающее шерсть, но значительно более прочное, дающее несминаемые ткани.

Лавсан обладает высокой термо-, влаго-, и свтостойкостью, устойчив к действию щелочей, кислот и окислителей.

Полиамидные смолы

Полимеры этого типа являются синтетическими аналогами белков. В их цепях имеются такие же, как в белках, многократно повторяющиеся амидные –СО–NH– группы. В цепях молекул белков они разделены звеном из одного С-атома, в синтетических полиамидах – цепочкой из четырёх и более С-атомов.

Волокна, полученные из синтетических смол, — капрон, энант и анид – по некоторым свойствам значительно превышают натуральный шёлк.

Из них вырабатывают красивые, прочные ткани и трикотаж. В технике используют изготовленные из капрона или анида верёвки, канаты, отличающиеся высокой прочностью. Эти полимеры применяют также в качестве основы автомобильных шин, для изготовления сетей, различных технических изделий.

Капрон является поликонденсатом аминокапроновой кислоты, содержащей цепь из шести атомов углерода:

Энант – поликонденсат аминоэнантовой кислоты, содержащий цепь из семи атомов углерода.

Анид (найлон и перлон) получается поликонденсацией двухосновной адипиновой кислоты НООС-(СН2)4-СООН и гексаметилендиамина NН2-(СН2)6- NН2.

Источник: http://xn----7sbb4aandjwsmn3a8g6b.xn--p1ai/views/alchemy/theory/chemistry/organic-chemistry/polymers.php

Полимеры, теория и примеры реакций

В 1833 году Й. Берцелиус ввел в обиход термин «полимерия», которым он назвал один из видов изомерии. Такие вещества (полимеры) должны были обладать одинаковым составом, но разной молекулярной массой, как например этилен и бутилен.

К современному пониманию термина «полимер» умозаключение Й. Берцелиуса не соответствует, потому что истинные (синтетические) полимеры в то время еще не были известны.

Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам.

Химия полимеров возникла только после создания А. М. Бутлеровым теории химического строения органических соединений и получила дальнейшее развитие благодаря интенсивным поискам способов синтеза каучука (Г. Бушарда, У. Тилден, К Гарриес, И. Л. Кондаков, С. В. Лебедев). С начала 20-х годов 20 века стали развиваться теоретические представления о строении полимеров.

Классификация полимеров

Классификация полимеров основана на трех признаках: их происхождении, химической природе и различиях в главной цепочке.

С точки зрения происхождения все полимеры подразделяют на природные (натуральные), к которым относят нуклеиновые кислоты, белки, целлюлозу, натуральный каучук, янтарь; синтетические (полученные в лаборатории путем синтеза и не имеющие природных аналогов), к которым относят полиуретан, поливинилиденфторид, фенолформальдегидные смоли и др; искусственные (полученные в лаборатории путем синтеза, но на основе природных полимеров) – нитроцеллюлоза и др.

Исходя из химической природы, полимеры делят на полимеры органической (в основе мономер – органическое вещество – все синтетические полимеры), неорганической (в основе Si, Ge, S и др. неорганические элементы – полисиланы, поликремниевые кислоты) и элементоорганической (смесь органических и неорганических полимеров – полислоксаны) природы.

Выделяют гомоцепные и гетероцепные полимеры. В первом случае главная цепь состоит из атомов углерода или кремния (полисиланы, полистирол), во втором – скелет из различных атомов (полиамиды, белки).

Физические свойства полимеров

Для полимеров характерны два агрегатных состояния – кристаллическое и аморфное и особые свойства – эластичность (обратимые деформации при небольшой нагрузке — каучук), малая хрупкость (пластмассы), ориентация при действии направленного механического поля, высокая вязкость, а также растворение полимера происходит посредством его набухания.

Получение полимеров

Реакции полимеризации – цепные реакции, представляющие собой последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера (рис. 1).

Рис. 1. Общая схема получения полимера

Так, например, полиэтилен получают полимеризацией этилена. Молекулярная масса молекулы достигает 1миллиона.

n CH2=CH2 = -(-CH2-CH2-)-

Химические свойства полимеров

В первую очередь для полимеров будут характерны реакции, характерные для функциональной группы, присутствующей в составе полимера. Например, если в состав полимера входит гидроксо-группа, характерная для класса спиртов, следовательно, полимер будет участвовать в реакциях подобно спиртам.

Во-вторых, взаимодействие с низкомолекулярными соединениями, взаимодействие полимеров друг с другом с образованием сетчатых или разветвленных полимеров, реакции между функциональными группами, входящими в состав одного и того же полимера, а также распад полимера на мономеры (деструкция цепи).

Применение полимеров

Производство полимеров нашло широкое применение в различных областях жизни человечества — химической промышленности (производство пластмасс), машино – и авиастроении, на предприятиях нефтепереработки, в медицине и фармакологии, в сельском хозяйстве (производство гербицидов, инсектицидов, пестицидов), строительной промышленности (звуко- и теплоизоляция), производство игрушек, окон, труб, предметов быта.

Примеры решения задач

Источник: http://ru.solverbook.com/spravochnik/ximiya/11-klass/polimery/

Полимеры — свойства и применение

  • Полимеры — это высокомолекулярные вещества с молекулярной массой от нескольких тысяч до нескольких миллионов. Свойства полимеров во многом обусловлены не только молекулярной массой, но и химическим составом звеньев, пространственной конфигурацией молекул, степенью разветвленности молекул, типом связей между молекулами, способом производства полимера. В зависимости от всех этих параметров свойства полимеров могут различаться очень сильно.Практически все полимеры являются хорошими диэлектриками, обладают низкой теплопроводностью, высокой механической прочностью. Стеклообразные полимеры бьются без острых осколков. Линейные полимеры обладают способностью к обратимым деформациям; поддаются ориентации макромолекул под влиянием механических нагрузок (на этом свойстве основано производство пленок и волокон). Важным качеством полимеров является резкое изменение характеристик при введении небольших количеств примесей.Полимеры существуют в различных агрегатных состояниях: в виде тягучей жидкости (смазки, клеи, лаки и краски, герметики), в виде эластичных материалов (резины, силикон, эластомеры, поролон) и в виде твердых пластмасс (полиэтилен, полипропилен, поликарбонат и т.д.).Полимеры в качестве химических веществ могут:— образовывать новые химические связи между молекулами; — образовывать новые связи между отдельными звеньями молекулы;— присоединять боковые звенья к основной цепочке молекул;— распадаться на отдельные мономеры.

Образование полимеров

Искусственные полимеры получают в результате трех типов реакций: полимеризации, поликонденсации, химических реакций. Полимеризацией называется процесс присоединения повторяющихся цепочек молекул (звеньев) к активному центру роста макромолекулы.

Механизм полимеризации состоит из таких этапов, как:— образование центров полимеризации;— рост молекул путем последовательного присоединения новых звеньев;— перенос центров полимеризации на другие молекулы, которые начинают активно расти;— разветвление молекул;

— прекращение процесса роста молекул.

Для того чтобы вызвать полимеризацию в исходном низкомолекулярном сырье, используют различные способы воздействия: высокое давление, высокие температуры, воздействие светом или облучением, катализатором. В результате полимеризации химический состав сырья и готового продукта остается одним и тем же, но меняется структура вещества.

Поликонденсацией называется процесс изготовления полимеров из многофункциональных соединений методом перегруппировки атомов и отделения побочных продуктов (воды, низкомолекулярных соединений). Способом поликонденсации, например, производят поликарбонаты, полиуретаны, фенолальдегидные смолы.

Полимер — что это такое? Производство полимеров

Удивительно, насколько разнообразны окружающие нас предметы и материалы, из которых они изготовлены. Раньше, примерно в XV-XVI веках, основными материалами были металлы и дерево, чуть позже стекло, почти во все времена фарфор и фаянс. А вот сегодняшний век — это время полимеров, о которых и пойдет речь дальше.

Понятие о полимерах

Полимер. Что это такое? Ответить можно с разных точек зрения. С одной стороны, это современный материал, используемый для изготовления множества бытовых и технических предметов.

С другой стороны, можно сказать, это специально синтезированное синтетическое вещество, получаемое с заранее заданными свойствами для использования в широкой специализации.

Каждое из этих определений верное, только первое с точки зрения бытовой, а второе — с точки зрения химической. Еще одним химическим определением является следующее. Полимеры — это макромолекулярные соединения, в основе которых лежат короткие участки цепи молекулы — мономеры. Они многократно повторяются, формируя макроцепь полимера. Мономерами могут быть как органические, так и неорганические соединения.

Поэтому вопрос: «полимер — что это такое?» — требует развернутого ответа и рассмотрения по всем свойствам и областям применения этих веществ.

Существует множество классификаций полимеров по различным признакам (химической природе, термостойкости, строению цепи и так далее). В ниже приведенной таблице коротко рассмотрим основные виды полимеров.

Классификация полимеров
Принцип Виды Определение Примеры
По происхождению (возникновению) Природные (натуральные) Те, что встречаются в естественных условиях, в природе. Созданы природой. ДНК, РНК, белки, крахмал, янтарь, шелк, целлюлоза, каучук натуральный
Синтетические Получены в лабораторных условиях человеком, не имеют отношения к природе. ПВХ, полиэтилен, фенолформальдегидные смолы, полипропилен, полиуретан и другие
Искусственные Созданы человеком в лабораторных условиях, но на основе природных полимеров. Целлулоид, ацетатцеллюлоза, нитроцеллюлоза
С точки зрения химической природы Органической природы Большая часть всех известных полимеров. В основе мономер органического вещества (состоит из атомов С, возможно включение атомов N, S, O, P и других). Все синтетические полимеры
Неорганической природы Основу составляют такие элементы, как Si, Ge, O, P, S, H и другие. Свойства полимеров: не бывают эластичными, не образуют макроцепей. Полисиланы, полидихлорфосфазен, полигерманы, поликремниевые кислоты
Элементоорганической природы Смесь органических и неорганических полимеров. цепь — неорганика, боковые — органика. Полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.
Различие главной цепочки Гомоцепные цепь представлена либо углеродом, либо кремнием. Полисиланы, полистирол, полиэтилен и другие.
Гетероцепные Основной остов из разных атомов. Полимеры примеры — полиамиды, белки, этиленгликоль.

Также различают полимеры линейного, сетчатого и разветвленного строения. Основа полимеров позволяет быть им термопластичными или термореактивными. Также они имеют различия по способности к деформации при обычных условиях.

ЭТО ИНТЕРЕСНО:  Как сделать фрезерный станок по дереву

Основные два агрегатных состояния, характерные для полимеров, это:

  • аморфное;
  • кристаллическое.

Каждое характеризуется своим набором свойств и имеет важное практическое значение. Например, если полимер существует в аморфном состоянии, значит, он может быть и вязкотекущей жидкостью, и стеклоподобным веществом и высокоэластичным соединением (каучуки). Это находит широкое применение в химических отраслях промышленности, строительстве, технике, производстве промышленных товаров.

Кристаллическое состояние полимеры имеют достаточно условное. На самом деле данное состояние перемежается с аморфными участками цепи, и в целом вся молекула получается очень удобной для получения эластичных, но в тоже время высокопрочных и твердых волокон.

Температуры плавления для полимеров различны. Многие аморфные плавятся при комнатной температуре, а некоторые синтетические кристаллические выдерживают довольно высокие температуры (оргстекло, стекловолокно, полиуретан, полипропилен).

Окрашиваться полимеры могут в самые разные цвета, без ограничений. Благодаря своей структуре они способны поглощать краску и приобретать самые яркие и необычные оттенки.

Применение полимеров в быту

Применение этих соединений повсеместно. Мало можно вспомнить областей промышленности, народного хозяйства, науки и техники, в которых не нужен был бы полимер. Что это такое — полимерное хозяйство и повсеместное применение, и чем оно исчерпывается?

  1. Химическая промышленность (производство пластмасс, дубильных веществ, синтез важнейших органических соединений).
  2. Машиностроение, авиастроение, нефтеперерабатывающие предприятия.
  3. Медицина и фармакология.
  4. Получение красителей и взрывчатых веществ, пестицидов и гербицидов, инсектицидов сельского хозяйства.
  5. Строительная промышленность (легирование сталей, конструкции звуко- и теплоизоляции, строительные материалы).
  6. Изготовление игрушек, посуды, труб, окон, предметов быта и домашней утвари.

Химия полимеров позволяет получать все новые и новые, совершенно универсальные по свойствам материалы, равных которым нет ни среди металлов, ни среди дерева или стекла.

Примеры изделий из полимерных материалов

Прежде чем называть конкретные изделия из полимеров (их невозможно перечислить все, слишком большое их многообразие), для начала нужно разобраться, что дает полимер. Материал, который получают из ВМС, и будет основой для будущих изделий.

Основными материалами, изготовленными из полимеров, являются:

  • пластмассы;
  • полипропилены;
  • полиуретаны;
  • полистиролы;
  • полиакрилаты;
  • фенолформальдегидные смолы;
  • эпоксидные смолы;
  • капроны;
  • вискозы;
  • нейлоны;
  • полиэфирные волокна;
  • клеи;
  • пленки;
  • дубильные вещества и прочие.

Это только небольшой список из того многообразия, что предлагает современная химия. Ну а здесь уже становится понятным, какие предметы и изделия изготавливаются из полимеров — практически любые предметы быта, медицины и прочих областей (пластиковые окна, трубы, посуда, инструменты, мебель, игрушки, пленки и прочее).

Полимеры в различных отраслях науки и техники

Мы уже затрагивали вопрос о том, в каких областях применяются полимеры. Примеры, показывающие их значение в науке и технике, можно привести следующие:

  • применение резины;
  • антистатические покрытия;
  • электромагнитные экраны;
  • корпусы практически всей бытовой техники;
  • транзисторы;
  • светодиоды и так далее.

Нет никаких ограничений фантазии по применению полимерных материалов в современном мире.

Производство полимеров

Полимер. Что это такое? Это практически все, что нас окружает. Где же они производятся?

  1. Нефтехимическая (нефтеперерабатывающая) промышленность.
  2. Специальные заводы по производству полимерных материалов и изделий из них.

Это основные базы, на основе которых получают (синтезируют) полимерные материалы.

Источник: https://FB.ru/article/163479/polimer---chto-eto-takoe-proizvodstvo-polimerov

Полимеры — определение — виды — свойства

Полимер (от греч. «πολυ» — много и «μερές» — часть) — это вещество, которое состоит из большого числа молекул. Эти молекулы связаны между собой в звенья и повторяются.

Немецкий химик Герман Штаудингер совместно с группой учёных на опытах доказал, что полимеры состоят из повторяющихся звеньев молекул, которые соединены между собой ковалентными связями. Это такая химическая связь, при которой два атома имеют общую электронную пару. То есть один электрон находится в одном атоме, другой — в другом и при этом они соединены. Учёные назвали такие молекулы «макромолекулами».

Химик также доказал, что пластмасса — это полимер (о пластмассе читайте ниже). За что получил Нобелевскую премию по химии в 1953 году.

ДНК — макромолекула, которая несёт в себе информацию о генах, т. е. наследственности человека

Типы полимеров

По химическому составу различают:

  • органические;
  • элементоорганические;
  • неорганические.

Органические полимеры:

  • природные;
  • искусственные (модифицированные);
  • синтетические.

Искусственные полимеры

Чтобы получить такие полимеры, человек проводит химические опыты. Например, чтобы получить модифицированный полимер, который затем будет применён при производстве красок, химики добавляют в раствор стирола в толуоле или ксилоле льняное или касторовое масло и нагревают его.

Пример такого полимера — целлюлоза.

Синтетические полимеры

Произвести такие полимеры можно с помощью химического синтеза (т. е. химическим путём). В синтезе участвуют высокомолекулярные органические продукты. Например, чтобы получить синтетический полимер лавсан нужно поликонденсировать (т. е. провести химический опыт) терефталевую кислоту и этиленгликоль.

Пример — капрон, нейлон, полиэтилен, полипропилен, полистирол, фенолформальдегидные смолы.

Элементоорганические полимеры

Содержат атомы других химических элементов, например кремния, алюминия, титана и др. Выделяют:

  • термостойкие полимеры;
  • полимеры с высокой электропроводностью и полупроводниковыми свойствами;
  • вещества с высокой твёрдостью и эластичностью;
  • биологические активные полимеры и др.

Химики получают такие полимеры при взаимодействии определённых органических веществ с солями или заменяя некоторые атомы углерода в молекулах на другие составляющие. Пример — полисилоксаны, полититаноксаны и др.

Неорганические полимеры

Полимеры, молекулы которых построены из неорганических боковых цепей (или неорганических радикалов). Неорганические полимеры можно обнаружить в составе земной коры.

Полимеры могут отличаться составом мономерных звеньев. Мономерное звено — это составная часть макромолекулы полимера. Различают:

  • гомополимеры;
  • гетерополимеры (или сополимеры).

Гомополимеры

Это такие полимеры, у которых одинаковые мономерные звенья. Например: полихлорвинил, поливинилацетат и полистирол.

Гетерополимеры

Это полимеры, которые имеют различные мономерные звенья. Например: сополимер хлористого винила с винилацетатом, сополимер стирола с бутадиеном.

Полимеры могут также подразделяются также на карбоцепные (или гомоцепные) и гетероцепные полимеры.

Карбоцепные полимеры

Главные цепи макромолекул таких полимеров включают только атомы углерода. Например: каучук.

Гетероцепные полимеры

Главные цепи макромолекул таких полимеров включают не только атомы углерода, но ещё и атомы кислорода, азота и серы. Например: простые эфиры (например, полиэтиленгликоль), сложные эфиры (глифталевые смолы, полипептиды (белки) и др.).

Полимеры также могут подразделяться в зависимости от расположения мономерных цепей в пространстве. Различают:

  • стереорегулярные (полимеры с линейной структурой);
  • нестереорегулярные (или атактические).

Строение макромолекул полимеров может быть различным. Таким образом, есть полимеры:

  • линейные;
  • разветвлённые;
  • лестничные;
  • трёхмерные сшитые (сетчатые, пространственные).

Полимеры можно получить разными способами:

  • если полимер получают с помощью поликонденсации, то такой полимер называют поликонденсационным (или реактопластами);
  • если с помощью полимеризации — речь идёт о полимеризационном полимере.

В зависимости от реакции полимера на нагревание выделяют:

  • термопластичные (полиэтилен, поливинилхлорид, полистирол);
  • термореактивные полимеры (полиэфиры, эпоксидные, меламиновые и фенольные смолы).

Свойства полимеров

  • предотвращают передачу тепла (являются теплоизоляторами);
  • обладают большой эластичностью;
  • обладают высокой стойкостью в агрессивной химической среде;
  • являются диэлектриками (субстанциями, которые плохо проводят электрический ток, т. е. не пропускают его через себя).

Где используются полимеры?

Благодаря своим свойствам, полимеры используются сейчас во многих отраслях. Их используют для производства множества материалов.

Например, в строительстве — как материал для электротехнических конструкций, кабелей, проводов, труб, изоляционных эмалей и лаков. Полимеры химическим путём добавляют в состав бетона и железобетона, чтобы улучшить их качества. Полимеры используют при производстве плёнок и защитных покрытий, сеток и ограждений.

Полимеры также используют в автомобилестроении. Из них делают детали для машин: резину, решётки радиаторов, колпаки для колёс, чехлы для сидений, вентиляционные решётки, коврики; их добавляют в лаки и краски. Они используются также при производстве клея.

В нефтегазовой промышленности также используются полимеры: при производстве оборудования, например насосов, камер и т. д.

В медицине полимеры применяют для изготовления капсул для лекарств. Полимер поликарбонат используют даже при разработке искусственного сердца. А гиалуроновая кислота, которая также является полимером, используется в процессе наращивания тканей.

Молекулы и атомы

Любое вещество состоит из очень маленьких частиц, которые можно увидеть только через микроскоп. Эти частицы называются атомами. Когда атомы объединяются, получаются молекулы.

Количество молекул бесконечно, потому что различные атомы могут объединяться. Но если убрать одни атомы и заменить их другими, это будет уже другая молекула, а соответственно, другое вещество.

Пластмасса

Пластмассовые игрушки

Пластмасса — это полимер, который не существует в природе. Его производит человек.

Это сокращение слов «пластическая» и «масса». Такое название было дано, потому что, когда пластмассу производят, она может принимать любую форму и потом держать эту форму. Чтобы изготовить пластмассу, нужны кристаллические и аморфные полимеры и органические соединения, которые можно найти в нефти.

В пластмассу в процессе производства могут добавляться красители для изменения её цвета.

Источник: https://www.uznaychtotakoe.ru/polimer/

Классификация полимеров | Химия онлайн

Классифицируются полимеры по различным признакам: составу, форме макромолекул, полярности, отношению к нагреву и т.д.

1. По составу основной цепи

гомополимеры — полимеры, построенные из одинаковых мономеров:

– А–А–А–А–

(целлюлоза, состоящая из остатков β-D-глюкозы);

— сополимеры — полимеры, цепочки молекул которых состоят из двух или более различных структурных звеньев:

–А–А–Б–А–Б–

(нуклеиновая кислота, гиалуроновая кислота, белки);

— блок-сополимеры, состоящие из нескольких полимерных блоков:

Сополимеры получаются в результате реакций сополимеризации.

2. По строению главной цепи

гомоцепные

–СН2–СН2–СН2, –SiН2–SiН2

гетероцепные

–СН2–О–СН2–О–, –Si (СН3)2–О–

Гомоцепные полимеры имеют главную цепь, состоящую из одинаковых атомов. Если она состоит из атомов углерода, то такие полимеры называют карбоцепными (полиэтилен, полистироли др.).

Гетероцепными называют такие полимеры, главная цепь которых состоит из различных атомов. К гетероцепным полимерам относятся простые эфиры, например, полиэтиленгликоль.

3. По регулярности строения цепи

— регулярные(стереорегулярные и стереонерегулярные) (присоединение мономерных звеньев по схеме «голова к хвосту» («головой» называется часть звена без заместителя, а «хвостом», соответственно, часть звена с заместителем);

нерегулярные (беспорядочное чередование мономеров различного химического состава).

Однако в большинстве случаев присоединение звеньев идет по типу «голова к хвосту» и при таком строении полимерная цепь довольно регулярна.

4. По форме макромолекулы

линейные;

разветвленные;

—  пространственные (сшитые)

Линейные и разветвленные цепи полимеров можно превратить в пространственные структуры «сшиванием» с помощью света, радиации или под действием химических реагентов.

5. По химическому составу

По химическому составу полимеры подразделяются на органические, элементоорганические и неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Органические полимеры в главной цепи кроме атомов углерода, могут содержать также и другие элементы — кислород, азот, серу и т.д. Органическими полимерами являются смолы и каучуки.

Элементоорганические соединения в природе не встречаются. Этот класс материалов полностью создан искусственно.

Элементоорганические полимеры содержат в основной цепи неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами (СН3, С6Н5, СН2). Эти радикалы придают материалу, прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. Представителями их являются кремнийорганические соединения.

Неорганические полимеры построены из атомов кремния, алюминия, германия, серы и др. и не содержат органические боковые радикалы. Неорганические полимеры являются основой керамики, стекол, ситаллов, слюдяных, асбестовых, углеграфитовых и других материалов.

6. По отношению к нагреванию

термопластические;

термореактивные

При нагревании термопластических полимеров их свойства постепенно изменяются и при достижении определенной температуры они переходят в вязкотекучее состояние. При охлаждении жидких термопластических полимеров наблюдаются обратные явления. Химическая природа полимера при этом не изменяется, процесс плавления и процесс отвердевания обратим.

К термопластическим полимерам относятся полиэтилен, полистирол, поливинилхлорид.

При нагревании термореактивных полимеров (реактопласты) они приобретают сетчатую структуру. Такие полимеры не восстанавливают свои свойства при нагревании и последующем охлаждении. Примером таких полимеров служат фенолформальдегидные смолы, мочевиноальдегидные, полиэфирные, эпоксидные и карбамидные смолы. Они содержат обычно различные наполнители.

7. По развитию деформации (при комнатных температурах)

пластомеры;

— эластомеры

Полимеры, которые легко деформируются при комнатной температуре, называют эластомерами, трудно деформируемые – пластомерами (пластиками).

8. По природе(происхождению)

— природные;

— искусственные;

— синтетические

Полимеры, встречающиеся в природе – органические вещества растительного (хлопок, шелк, натуральный каучук, целлюлоза и др.) и животного (кожа, шерсть и др.) происхождения, а также минеральные вещества (слюда, асбест, естественный графит, природный алмаз, кварц и др.).

Искусственные полимеры получают из природных полимеров путем их химической модификации. Одним из наиболее распространенных природных полимеров, который непрерывно регенерируется в процессе фотосинтеза, является целлюлоза.

Нитроцеллюлоза и ацетатцеллюлоза – продукты химической модификации целлюлозы – искусственные полимеры. Они растворимы в ацетоне, хлороформе и др. растворителях.

Эфиры целлюлозы используют для получения фотопленки и волокон.

Вискозная нить получается растворением природной целлюлозы в сероуглероде со щелочью с последующим ее выделением. Вискозная нить и целлюлоза природная имеют различную кристаллическую структуру, пластмасса целлулоид получается обработкой нитроцеллюлозы камфарой в присутствии спирта.

Синтетические полимеры получают из простых веществ путем химического синтеза. Основным преимуществом синтетических полимеров перед природными являются неограниченные запасы исходного сырья и широкие возможности синтеза полимеров с заранее заданными свойствами. Исходным сырьем для получения синтетических полимеров являются продукты химической переработки нефти, природного газа и каменного угля.

9. По полярности

полярные;

неполярные

Полярные содержат полярные группы -OH, -COOH, -CN, -Cl, -CONH2 — ПВС (поливиниловый спирт), ПВХ (поливинилхлорид).

Неполярные не содержат полярных групп атомов — ПЭ (полиэтилен), ПП (полипропилен) и др.

Высокомолекулярные соединения (ВМС)

Источник: https://himija-online.ru/organicheskaya-ximiya/vysokomolekulyarnye-soedineniya/klassifikaciya-polimerov.html

Понравилась статья? Поделиться с друзьями:
Электропривод
Как самому сделать сверлильный станок

Закрыть